期刊文献+

挤压态Mg-Sm-Ca合金的显微组织和力学性能(英文) 被引量:1

Microstructure and Mechanical Properties of Extruded Mg-Sm-Ca Alloys
原文传递
导出
摘要 研究了挤压Mg-4.0Sm-xCa(x=0.5,1.0,1.5,mass fraction%)合金经过200℃等温时效处理后的显微组织、时效硬化行为和力学性能。结果表明,随着Ca的添加,在镁基体中形成针/棒状的Mg2Ca相、块状和颗粒状含Ca元素的Mg_(41)Sm_5相,合金的晶粒被细化、拉伸力学性能得到显著提高。在T5(峰值时效)态下,Mg-4.0Sm-1.0Ca合金具有最细的晶粒,其大小约为5.1μm。随着Ca含量的增加,针/棒状的Mg_2Ca相逐渐增多,当Ca含量达到1.5%时,晶界处含Ca的块状Mg_(41)Sm_5相的量明显减少。在峰值时效态下,Mg-4.0Sm-1.0Ca合金具有最大的HV硬度值(820 MPa)以及最佳的力学性能,其抗拉强度、屈服强度和延伸率分别达到了267 MPa,189 MPa和24%。合金力学性能的提高主要归因于晶粒细化、固溶强化以及Mg2Ca相和Mg_(41)Sm_5相的析出强化。 Microstructure,age hardening response and mechanical properties of Mg-4.0Sm-xCa(x=0.5,1.0,1.5,wt%) alloys extruded followed by isothermal aging at 200 ℃ were investigated.The results indicate that with the addition of Ca,the bulk and particle-like Mg(41)Sm5 phase containing Ca and the needle/rod-like Mg2Ca phase are formed in the Mg matrix,grains of the alloy are refined and tensile mechanical properties are improved remarkably.Under T5(peak-aging) condition,the Mg-4.0Sm-1.0Ca alloy shows the smallest grain size of 5.1 μm.With the increase of Ca content the amount of Mg2Ca phase increases gradually,but that of the bulk Ca-containing Mg(41)Sm5 phase,which is mainly distributed at the grain boundaries,decreases obviously when Ca content reaches 1.5 wt%.The peak-aged Mg-4.0Sm-1.0Ca alloy exhibits the highest hardness HV(820 MPa) and the optimal ultimate tensile strength,yield tensile strength and elongation of 267 MPa,189 MPa and 24%,respectively.The improved mechanical properties of the alloy are attributed to the grain refinement,the solution strengthening and the precipitation strengthening of Mg2Ca phase and Mg(41)Sm5 phase.
机构地区 太原科技大学
出处 《稀有金属材料与工程》 SCIE EI CAS CSCD 北大核心 2016年第2期287-291,共5页 Rare Metal Materials and Engineering
基金 Doctoral Fund of Taiyuan University of Science and Technology(20122011)
关键词 Mg-Sm-Ca合金 挤压-时效处理 显微组织 力学性能 Mg-Sm-Ca alloy extruding-aging microstructure mechanical property
  • 相关文献

参考文献15

  • 1Zhou Jixue, Yang Yuansheng, Tong Wenhui et al. Rare Metal Materials andEngineering[J], 2010, 39:1899 (in Chinese).
  • 2Bi Guangli, Fang Daqing, Zhao Lei et al. Journal of Alloys and Compounds[J], 2011, 509:8268.
  • 3Barbagallo S, Cavaliere P, Cerri E et al. Materials Science andEngtneeringA[J], 2004, 367:9.
  • 4Li Daquan, Wang Qudong, Ding Wenjiang et al. Transactions of Nonferrous Metals Society of China [J], 2010, 20:1311.
  • 5Ding Hanlin, Liu Liufa, Kamado Set al. Journal of Alloys andCompounds[J], 2008, 456:400.
  • 6Zhang jinghuai, Liu Shunjuan, Leng Zhe et aL Materials Science and Engineering A[J], 2011,528:2670.
  • 7Nie J F, Muddle B C. Acta Materialia[J], 2000, 48:1691.
  • 8Yan Yunqi, Zhang Tiejie, Deng Ju et al. Rare Metal Materials andEngineering[J], 2005, 34(5): 846 (in Chinese).
  • 9Li Yuncang, Hodgson P D, Wen Cui'e. Journal of Materials Science[J], 2011, 46:365.
  • 10Fei Houjun, Xu Guanglong, Liu Libin et al. Transactions of Nonferrous Metals Society of China[J], 2013, 23:881.

同被引文献13

引证文献1

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部