期刊文献+

具有耗散项的Musca domestica苍蝇模型波前解的持续性

Persistence of Traveling Fronts of the Musca Domestica Blowflies Model with Long-range Diffusion
下载PDF
导出
摘要 对具有耗散项的Musca domestica苍蝇模型的波前解进行研究,在耗散充分小的情况下,运用几何奇异摄动理论证明其波前解是持续的,即如果开始时种群数量非零,那么它最终将稳定于一个常态。 We studied the traveling fronts of the Musca domestica blowflies model with long-range diffusion from geometric singular perturbation point of view. Using analogy between traveling waves and heteroclinic solutions of corresponding ODEs,we proved the persistence of these waves for sufficiently small dissipation. Namely,the population quantity will finally reach a steady state if it is nonzero at begin.
作者 刘芳 傅仰耿
出处 《西华大学学报(自然科学版)》 CAS 2016年第2期94-99,共6页 Journal of Xihua University:Natural Science Edition
基金 国家自然科学基金(11401229)
关键词 具有耗散项的Musca domestica苍蝇模型 几何奇异摄动 波前解 持续性 Musca domestica blowflies model with long-range diffusion geometric singular perturbation traveling fronts persistence
  • 相关文献

参考文献9

  • 1Taylor C E, Sokal R R. Oscillations in Housefly Population Sizes Due to Time Lags[ J]. Ecology, 1976, 57:1060.
  • 2Wu J: Theory and Applications of Partial Functional Differential Equations[ M]. New York: Springer- Verlag, 1996.
  • 3Murray J D. Mathematical Biology [ M]. New York : Springer - Verlag, 1989.
  • 4邓习军.具时空时滞的扩散Musca domestica苍蝇模型的波前解[J].长江大学学报(自科版)(上旬),2006,3(3):6-9. 被引量:1
  • 5邓习军.具离散时滞的扩散Musca domestica苍蝇模型的波前解[J].工程数学学报,2008,25(4):651-658. 被引量:1
  • 6Fife P C. Mathematical Aspects of Reaction and Diffusion Systems [ M]. Berlin :Lecture Notes in Biomathematics, 1979.
  • 7Fenichel N. Geometric Singular Perturbation Theory for Ordinary Differential Equations [ J ]. J Differential Eqs, 1979, 31:53.
  • 8Fu Y, Liu Z. Persistence of Travailing Fronts of Kdv- Buramoto Equation[ J]. Appl Math Comput, 2010,216:2199.
  • 9Yuliya N Kyrychko, Konstantin B Blyuss. Persistence of Traveling Waves in a Generalized Fisher Equation [ J ]. Physics Letter A, 2009373:668.

二级参考文献5

  • 1taylor C E, Sokal R R. Oscillations in housefly population sizes due to time lags[J]. Ecology, 1976, 57: 1060-1067
  • 2Ruan S. Delay differential equations in single species dynamics[C]// Delay Differential Equations with Applications, NATO Advanced Study Institute, 2004
  • 3Wu J. Theory and Applications of Partial Functional Differential Equations[M]. New York: Springer-Verlag, 1996
  • 4Fife P C. Mathematical Aspects of Reaction and Diffusion Systems [M]. Lecture Notes in Biomathematics, Vol. 28, Springer-Verlag, Berlin, 1979
  • 5Wu J, Zou X. Traveling wave fronts of reaction diffusion systems with delay[J]. Journal of Dynamics and Differential Equations, 2001, 13:651-687

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部