摘要
对具有耗散项的Musca domestica苍蝇模型的波前解进行研究,在耗散充分小的情况下,运用几何奇异摄动理论证明其波前解是持续的,即如果开始时种群数量非零,那么它最终将稳定于一个常态。
We studied the traveling fronts of the Musca domestica blowflies model with long-range diffusion from geometric singular perturbation point of view. Using analogy between traveling waves and heteroclinic solutions of corresponding ODEs,we proved the persistence of these waves for sufficiently small dissipation. Namely,the population quantity will finally reach a steady state if it is nonzero at begin.
出处
《西华大学学报(自然科学版)》
CAS
2016年第2期94-99,共6页
Journal of Xihua University:Natural Science Edition
基金
国家自然科学基金(11401229)