期刊文献+

基于改进SFLA-PF算法的OFDM系统目标跟踪 被引量:1

Improved tracking targets SFLA-PF algorithm based on OFDM system
下载PDF
导出
摘要 在OFDM通信系统中,为了解决非线性的目标跟踪问题,提出了基于改进混合蛙跳算法(SFLA)和粒子滤波算法(PF)相结合的方法来研究动态目标跟踪技术。首先利用高斯变异的局部搜索能力强和柯西变异的全局搜索能力强等优点对混合蛙跳算法进行改进,然后用改进后的混合蛙跳算法来优化粒子滤波算法进行动态跟踪,其优点不需要重采样步骤,有效地保持了粒子的多样性和有效性。仿真结果表明,该算法能够有效实现动态目标跟踪,并且跟踪效果优于同等条件下的混合蛙跳算法和粒子滤波算法。 In the OFDM communication system, in order to solve nonlinear target tracking problem, an improved SFLA (SF- LA) and particle filter (PF) is proposed based on a combination of methods to study the dynamic target tracking technology. Firstly, Ganssian mutation local search ability and Canchy mutation global search ability, etc. are used to improve SFLA, then improved SFLA is used to optimize the dynamic tracking of particle filter algorithm, its advantages are not requiting resa- mpling steps, and meanwhile effectively maintain the diversity and effectiveness of the particles. The simulation results show that the algorithm can effectively achieve dynamic target tracking, and tracking better than SFLA and particle filter algorithm under the same conditions.
出处 《电视技术》 北大核心 2016年第3期103-106,121,共5页 Video Engineering
基金 陕西省自然科学基金项目(2014JM2-6088)
关键词 OFDM 混合蛙跳 粒子滤波 高斯变异 柯西变异 OFDM SFLA particle filter Gaussian mutation Cauchy mutation
  • 相关文献

参考文献10

二级参考文献89

  • 1马丽,常发亮,乔谊正.基于均值漂移算法和粒子滤波算法的目标跟踪[J].模式识别与人工智能,2006,19(6):787-793. 被引量:20
  • 2万琴,王耀南.一种多运动目标检测、跟踪方法研究与实现[J].计算机应用研究,2007,24(1):199-202. 被引量:16
  • 3邹冈,石章松,刘忠.传感器网络中的分布式粒子滤波被动跟踪算法比较研究[J].传感技术学报,2007,20(6):1344-1348. 被引量:8
  • 4MAGGIO E,TAJ M,CAVALLARO A.Efficient multi-target visual tracking using random finite sets[J].IEEE Transactions on Circuits and Systems for Video Technology,2008,18(8):1016-1027.
  • 5XU X,LI R.Adaptive raoblackwellized particle filter and its evaluation for tracking in surveillance[J] /IEEE Transactions on Image Processing,2007,16(3):838-849.
  • 6LAO Y,ZHU J,ZHENG Y.Sequential particle generation for visual tracking[J].IEEE Transactions on Circuits and Systems for Video Technology,2009,19(9):1365-1378.
  • 7PAN P,SCHONFILD D.Dynamic proposal variance and optimal particle allocation in particle filtering for video tracking[J].IEEE Transaction on Circuits and Systems for Video Technology,2008,18(9):1268-1279.
  • 8BOUAYNAYA N,SCHONFELD D.On the optimality of motionbased particle filtering[J].IEEE Transactions on Circuits and Systems for Video Technology,2009,19(7):1068-1072.
  • 9IOANNIS P,EDWIN H R.Coupled prediction classification for robust visual tracking[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2010,32(9):1553-1567.
  • 10SOTO D A,REGAZZONI M C S.Bayesian tracking for video analytics[J].IEEE Signal Processing Magazine,2010,27(5):46-55.

共引文献88

同被引文献1

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部