期刊文献+

基于双向稀疏光流融合的小目标检测方法 被引量:2

Moving target detection method based on bidirectional sparse optical flow
下载PDF
导出
摘要 针对动态背景下的小目标检测问题,提出了基于双向稀疏光流融合的目标检测方法。首先采用FAST方法提取当前帧图像中的角点,然后在连续的三帧图像中进行前、后向稀疏光流跟踪,确定正确匹配的特征点对,利用匹配的特征点对计算用于背景补偿的帧间运动参数,最后在背景补偿的基础上进行三帧差分,以检测出图像中的运动小目标。实验结果显示,本算法能够很好地解决背景和目标同时快速运动的问题,为运动目标的跟踪奠定基础。 A target detection method to detect small target in dynamic background based on the fusion of bidirectional sparse optical flow is proposed. At first, corners in current image are extracted based on FAST method, and then bidirectional sparse optical flow between continuous frames are executed to determine matching points, and uses these pairs of matching points to calculate motion parameters between frames. Finally, after executing background compensation, frame difference is done to detect small moving target in image. The experimental resuhs show that this algorithm can well deal with rapid motion both of the background and targets.
出处 《电视技术》 北大核心 2016年第3期122-125,129,共5页 Video Engineering
关键词 FAST 动态背景 稀疏光流 帧差 背景补偿 FAST dynamic background sparse optical flow frame difference background
  • 相关文献

参考文献4

二级参考文献35

  • 1卢振泰,陈武凡.基于共生互信息量的医学图像配准[J].计算机学报,2007,30(6):1022-1027. 被引量:27
  • 2Tsaig Y, Averbuch A. Automatic segmentation of moving objects in video sequences-A region label- ing approach[J.IEEE Conference on Computer Vi- sion and Pattern Recognition, 1999, (66) : 164-170.
  • 3David A Forsyth, Jean Ponce.Computer Vision: A Modem Approach[M].New Jersey:Prentice Hall,2002.
  • 4Dellaert F, Seitz S, Thorpe C, et al.Structure from motion without correspondence[C].IEEE Conference on Computer Vision and Pattern Recognition, 2000: 557-564.
  • 5IraniM, Anandan P.A unified approach to moving object detection in 2D and 3D scenes [J]. IEEE Transactions on Pattern Analysis and Machine Intel- ligence, 1998,20 (6) : 577-589.
  • 6Barron J,Fleet D,Beauchemin S.Performance of op- tical flow techniques[J].Intemational Journal of Com- puter Vision, 1994,12(1) :42-77.
  • 7Anderson C H, Butt P J, Van G S.Change detec- tion and tracking using pyramid transform techniques [J].SPIE, Intelligent Robots and Computer Vision, 1985,579: 72-78.
  • 8Lucas B D, technique w CAI, 1981, Grabner H Kanade T. An iterative image registration th an application to stereo vision [ C ]//IJ- 81 : 674-679.
  • 9Bischof H. On-line boosting and vision [ C//Computer Vision and Pattern Recognition, 2006 IEEE Computer Society Conference on IEEE, 2006, 1 : 260 -267.
  • 10Stalder S, Grabner H, Van Gool L. Beyond semi-super- vised tracking: Tracking should be as simple as detec- tion, but not simpler than recognition [ C]//Computer Vision Workshops (ICCV Workshops), 2009 IEEE 12th International Conference on IEEE, 2009: 1409-1416.

共引文献20

同被引文献21

引证文献2

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部