期刊文献+

基于相干性理论的非凸块稀疏压缩感知 被引量:1

A coherence theory of nonconvex block-sparse compressed sensing
原文传递
导出
摘要 限制等容性质(restricted isometry property,RIP)在压缩感知的理论研究中占据重要地位.然而,限制等容条件的验证却是一个复杂的组合优化问题.为了克服这一问题,本文将相干性理论引入非凸块稀疏压缩感知理论的研究,得到了块结构信号恢复的两类充分条件.所获结果将基于传统稀疏凸优化问题的相干性理论研究推广至了非凸块稀疏的情形.通过构造一类块相干系数较小的测量矩阵,非凸块稀疏压缩感知策略的有效性得到了数值实验的进一步验证. The restricted isometry property plays an important role in the theoretical study of compressed sensing.However,the verification of any given restricted isometry conditions is a complex combinatorial optimization problem.To remedy this issue,in this article,we propose a coherence theory of nonconvex block-sparse compressed sensing and obtain two types of sufficient conditions for block-structured signal recovery.The obtained results extend the coherence theory used in the traditional convex sparse recovery case to the nonconvex blocksparse recovery case.With constructing a sort of measurement matrices whose block coherence were proved to be very small,we demonstrate the effectiveness of the strategy for nonconvex block-sparse compressed sensing via a series of simulation studies.
出处 《中国科学:信息科学》 CSCD 北大核心 2016年第3期376-390,共15页 Scientia Sinica(Informationis)
基金 国家自然科学基金(批准号:61273020) 中央高校基本业务费专项资金(批准号:XDJK2015A007) 国家高技术研究发展计划(863)(批准号:2013AA013801)资助项目
关键词 块稀疏 压缩感知 RIP 块相干性 非凸极小化方法 block sparsity compressed sensing RIP block coherence nonconvex minimization method
  • 相关文献

参考文献1

二级参考文献15

  • 1Natarajan B K. Sparse approximate solutions to linear sys- tems. SIAM Journal oll Computing, 1995, 24(2): 227-234.
  • 2Chen S, Donoho D L, Saunders M A. Atomic decomposi- tion by basis pursuit. SIAM Journal on Scientit]c Comput- ing, 1998, 20(1): 33-61.
  • 3Candes E, Wakin M, Boyd S. Enhancing sparsity by reweighted L1 minimization. Journal of Fourier Analysis and Applications, 2008, 14(5): 877--905.
  • 4Chartrand R. Exact reconstructions of sparse signals via nonconvex minimization. IEEE Signal Processing Letters, 2007, 14(I0): 707--710.
  • 5Chartrand R, Staneva V. Restricted isometry properties and nonconvex compressive sensing. Inverse Problems, 2008, 24(3): 1-14.
  • 6Donoho D L. Neighborly polytopes and the sparse solu- tion of underdetermined linear equations [Online], available: http: //www-stat.stanford.edu/ donoho/ Reports/ 2005/ NPaSSULE-01-28-05.pdf, November 8, 2011.
  • 7Donoho D L. High-dimensional centrally symmetric poly- topes with neighborliness proportional to dimension. Dis- crete and Computational Geometry, 2006, 35(4): 617-652.
  • 8Donoho D L, Stodden V. Breakdown point of model selection when the number of variables exceeds the number of observa- tions. In: Proceedings of the International Joint Conference on Neural Networks. Vancouver, USA: IEEE, 2006. 1916- 1921.
  • 9Xu Z B, Zhang H, Wang Y, Chang X Y, Yong L. L1/2 reg- ularization. Science in China Series F: Information Sciences, 2010, 53(6): 1159-1169.
  • 10Chen X, Xu F M, Ye Y. Lower bound theory of nonzero entries in solutions of L2-Lp minimization. SIAM Journal on Scientific Computing, 2010, 32(5): 2832-2852.

共引文献33

同被引文献5

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部