期刊文献+

原创科技复杂网络的反演模型研究

Inversion model of an original science complex network
原文传递
导出
摘要 为减少先进科技跟踪成本,研究了原创科技复杂网络的反演模型,将传统的科技信息直接获取变为间接推理。该模型首先以约束反演方法来提取复杂网络中各个节点的社会属性和技术属性,并对其进行量化;然后研究属性间关联关系的计算方法,形成统一的分值矩阵模型,并量化复杂网络模型的各个节点间的权值;最后对模型进行分析形成多种优化目标的计算方法,并采用约束反演推理策略进行复杂网络最优路径求解,其中引入变量事件分类以加快反演速度。实验结果表明,该模型能够快速反演出先进科技的来源,并具有良好的可信度。 In an attempt to reduce tracking costs for advanced science, an inversion model of an original science complex network has been developed in which indirect reasoning is used rather than obtaining information directly. The model first extracts social and technical attributes of each node, sampled according to the weight of each node. Secondly the method of calculating the relationship between those properties is provided. Applying a unified score matrix model allows the complex weight of each edge of the network model to be calculated. Finally several optimization methods are used. We can combine the constrained inversion process with several reasoning approaches to establish an optimal path for the complex network. Moreover, our method speeds up the inversion by applying a variable event classification. The experimental results show that the model can find the sources of advanced technology in reasonable time and also provide sufficient accuracy.
出处 《北京化工大学学报(自然科学版)》 CAS CSCD 北大核心 2016年第2期108-113,共6页 Journal of Beijing University of Chemical Technology(Natural Science Edition)
基金 北京化工大学学科建设项目(XK1520)
关键词 复杂网络 约束优化 反演 技术和社会属性 complex networks constrained optimization inversion technical and social attributes
  • 相关文献

参考文献10

  • 1Gregg D G. Designing for collective intelligence [ J ]. Communications of the ACM, 2010, 53(4) : 134-138.
  • 2张涛,张军,柳重堪.基于卫星时变网络的时延受限最小费用路由算法[J].电子学报,2006,34(9):1584-1589. 被引量:4
  • 3Dewen S, Meixia T, Hao W, et al. Multiple constrained dynamic path optimization based on improved ant colony algorithm [ J]. International Journal of u-and e-Service, Science and Technology, 2014, 7(6) : 117-130.
  • 4Rezaei G, Afshar M H, Rohani M. Layout optimization of looped networks by constrained ant colony optimisation algorithm[ J ]. Advances in Engineering Software, 2014, 70: 123-133.
  • 5Chuang Y C, Chen C T, Hwang C. A simple and effi- cient real-coded genetic algorithm for constrained optimi- zation[ J]. Applied Soft Computing, 2016, 38 : 87-105.
  • 6Monfroglio A. Timetabling through constrained heuristic search and genetic algorithms[ J]. Software: Practice and Experience, 1996, 26(3): 251-279.
  • 7金劲,洪毅,赵付青,余冬梅.多约束条件蚁群优化算法的收敛性分析及其应用[J].控制理论与应用,2010,27(10):1353-1361. 被引量:3
  • 8Zhao C Y, Wang J L, Qin J, et al. A hybrid algorithm combining ant colony algorithm and genetic algorithm for dynamic web service composition [ J]. Open Cybernetics & Systemics Journal, 2014, 8 (1): 146-154.
  • 9Rosenberg E S, Alffeld M, Poon S H, et al. Immune control of HIV- 1 after early treatment of acute infection EJl. Nature, 2000, 407(6803) : 523-526.
  • 10MacMicking J D, Taylor G A, McKinney J D. Immune control of tuberculosis by IFN-~/-inducible LBG-47 E J 1. Science, 2003, 302(5645): 654-659.

二级参考文献12

  • 1段海滨,王道波.蚁群算法的全局收敛性研究及改进[J].系统工程与电子技术,2004,26(10):1506-1509. 被引量:40
  • 2石立宝,郝晋.随机摄动蚁群算法的收敛性及其数值特性分析[J].系统仿真学报,2004,16(11):2421-2424. 被引量:7
  • 3段海滨,王道波,于秀芬.基本蚁群算法的A.S.收敛性研究[J].应用基础与工程科学学报,2006,14(2):297-301. 被引量:8
  • 4Ibnkahla M,Rahman Q M,Sulyman A I,etc.High-speed satellite mobile communications:Technologies and challenges[J].Proceedings of the IEEE,2004,92(2):312-339.
  • 5Mcmahon G,Septiawan R,Sugden S.A multiservice traffic allocation model for LEO satellite communication networks[J].IEEE Journal on Selected Areas in Communications,2004,22(3):501-507.
  • 6Gounder V V,Prakash R,Abu-Amara H.Routing in LEObased satellite networks[A].Wireless Communications and Systems,1999 Emerging Technologies Symposium[C].Richardson:IEEE,1999.22.1-22.6.
  • 7Uzunalioglu H.Probabilistic routing protocol for low earth orbit satellite networks[A].ICC'98[C].Atlanta:IEEE,1998.89-93.
  • 8Jukan A,Hoang Nam Nguyen,Franzl G.QoS-based routing methods for multi-hop LEO satellite networks[A].ICON 2000[C].Singapore:ICON,2000.399-405.
  • 9Cheng S,Nahrstedt K.On finding multi-constrained paths[A].ICC'98[C].Atlanta:IEEE,1998.874-879.
  • 10Korkmaz T,Krunz M.Multi-constrained optimal path selection[A].Proc of the INFOCOM 2001[C].Anchorage:IEEE,2001.834-843.

共引文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部