期刊文献+

基于RGB比例空间的立体匹配算法 被引量:2

Stereo Matching Algorithm Based on RGB Proportional Space
下载PDF
导出
摘要 实际场景中,由于光照条件不同,使从不同角度获得的、对应同一场景的图像像素对的RGB值不同,从而导致匹配错误,为了改善此问题,根据RGB色彩模型,形成RGB比例空间,提出基于RGB比例空间的自适应权值算法。实验结果表明,在光照条件不同时,与传统的基于RGB空间的匹配算法进行比较,该算法可以得到更准确的视差图。 In a real scene,due to different illuminant color,corresponding points that are projections of the same scene point may have different RGB values of pixels and performance of stereo matching algorithms can be degraded. In order to improve the performance of algorithms,RGB proportional space is proposed based on the color formation model and pixel values are transformed into this space. We present an adapt support-weight algorithm based on RGB proportional space. Experimental results show that compared with the algorithm in the traditional RGB vector space,our algorithm can obtain better disparity maps.
出处 《吉林大学学报(信息科学版)》 CAS 2016年第1期54-58,共5页 Journal of Jilin University(Information Science Edition)
基金 国家自然科学基金资助项目(61271315 61171078)
关键词 立体匹配 RGB比例空间 自适应支持权值算法 stereo matching RGB proportional space adapt support-weight algorithm
  • 相关文献

参考文献1

二级参考文献20

  • 1Scharstein D and Szeliski R.A taxonomy and evaluation of dense two-frame stereo correspondence algorithms[J].International Journal of Computer Vision,2002,47(1-3):7-42.
  • 2Yoon K J and Kweon S.Adaptive support-weight approach for correspondence search[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2006,28(4):650-656.
  • 3De-Maeztu L,Villanueva A,and Cabeza R.Stereo matching using gradient similarity and locally adaptive support-weight[J].Pattern Recognition Letters,2011,32(13):1643-1651.
  • 4Heo Y S,Lee K M,and Lee S U.Robust stereo matching using adaptive normalized cross-correlation[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2011,33(4):807-822.
  • 5Li Li,Zhang Cai-ming,and Yan Hua.Cost aggregation strategy for stereo matching based on a generalized bilateral filter model[C].Proceedings of International Conference on Information Computing and Applications,Tangshan,China,2010:193-200.
  • 6Richard C,Orr D,and Davies I,et al..Real-time spatiotemporal stereo matching using the dual-cross-bilateral grid[C].Proceedings of the11th European Conference on Computer Vision Conference on Computer Vision,Crete,Greece,2010:510-523.
  • 7Bobick A F and Intille S S.Large occlusions stereo[J].International Journal of Computer Vision,1999,33(3):181-200.
  • 8Sun Jian,Zheng Nan-ning,and Shum H Y.Stereo matching using belief propagation[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2003,25(7):787-800.
  • 9Papadakis N and Caselles V.Multi-label depth estimation for graph cuts stereo problems[J].Journal of Mathematical Imaging and Vision,2010,38(1):70-82.
  • 10Komodakis N,Paragios N,and Tziritas G.MRF energy minimization and beyond via dual decomposition[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2011,33(3):531-552.

共引文献9

同被引文献22

引证文献2

二级引证文献43

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部