期刊文献+

引导滤波算法的CUDA加速实现 被引量:4

Speed-up Implementation of Guided Filtering Approach Based on CUDA
下载PDF
导出
摘要 针对引导滤波算法运算速度慢、无法实时处理的问题,提出基于统一计算设备架构(CUDA:Compute Unified Device Architecture)实现引导滤波算法的加速。利用CUDA并行编程实现图像邻域窗口像素值求和,进而获得图像邻域均值;通过利用寄存器和纹理存储器,同时优化算法步骤,获得引导滤波关键参数,进而实现对算法的整体优化。实验结果表明,与基于CPU实现引导滤波算法相比,基于CUDA并行处理可在很大程度上提高运算速度,基本达到了实时处理的要求。 For the shortcoming of guided filtering,such as slow operational speed and non-real time processing,the algorithm is speeded up based on CUDA( Compute Unified Device Architecture). In the proposed method,the sum of neighbor pixels' value is calculated based on CUDA parallel programming,and the mean value is calculated. The key parameters of guided filtering are obtained by taking advantage of texture memory and registers and algorithm optimizing. The whole optimum of approach is achieved. Experimental results show that,compared with CPU-based guided filtering algorithm,the proposed CUDA-based algorithm is greatly speeded up and basically meets the requirement of real-time processing.
出处 《吉林大学学报(信息科学版)》 CAS 2016年第1期104-110,共7页 Journal of Jilin University(Information Science Edition)
基金 国家自然科学基金资助项目(61271326)
关键词 引导滤波 统一计算设备架构 并行计算 优化技术 guided filtering compute unified device architecture(CUDA) parallel processing optimization technique
  • 相关文献

参考文献16

  • 1TOMASI C, MANDUCHI R. Bilateral Filtering for Gray and Color Images [ C ]//Computer Vision, 1998 Sixth International Conference on. [ S. 1. ] : IEEE, 1998 : 839-846.
  • 2LIU C, FREEMAN W T, SZELISKI R, et al. Noise Estimation from a Single Image [ C ]//Computer Vision and Pattern Recognition, 2006 IEEE Computer Society Conference on. [ S. 1. ] : IEEE, 2006: 901-908.
  • 3PETSCHNIGG G, SZELISKI R, AGRAWALA M, et al. Digital Photography with Flash and No-Flash Image Pairs [ J]. ACM Transactions on Graphics (TOG), 2004, 23 (3): 664-672.
  • 4HE K, SUN J, TANG X. Guided Image Filtering [ C] //Computer Vision-ECCV 2010. Berlin/Heidelberg: Springer, 2010: 1-14.
  • 5HE K M, SUN J, TANG X. Guided Image Fihering [ J ]. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 2013, 35(6) : 1397-1409.
  • 6朱振伍,何凯,王新磊.基于CUDA和卡尔曼预测的实时电子稳像方法[J].吉林大学学报(信息科学版),2015,33(1):45-51. 被引量:4
  • 7ZHU Zhenwu, HE Kai, WANG Xinlei. Real-Time Electronic Image Stabilizing Approach Based on CUDA and Kalman Predictor [ J ]. Journal of Jilin University: Information Science Edition, 2015, 33 ( l ) : 45-51.
  • 8WANG Feng, FANG Shuai. The Application of Guided Image Filter in Single Image Restoration [ D ]. Hefei : School of Computer and Information, Hefei University of Technology, 2012.
  • 9PHAM C C, JEON J W. Efficient Image Sharpening and Denoising Using Adaptive Guided Image Filtering [ J ]. IET Image Processing, 2014, 9(I): 71-79.
  • 10SANDERS J, KANDROT E. CUDA by Example: An Introduction to General-Purpose GPU Programming [ M ]. Boston: Pearson Education, 2010.

二级参考文献27

  • 1张舒,褚艳利.GPU高性能计算之CUDA[M].北京:中国水利水电出版社.200910:213.
  • 2Lowe D G.Distinctive image features from scale-invariant keypoints[J].International Journa of Computer Vision,2004,60(2):91.
  • 3Sinha S,Frahm J,Pollefeys M,et al.Feature tracking and matching in video using programmable graphics hardware[EB/OL].[2007-3-25].http://citeseerx.ist.pau.edu/ viewdoc/download? doi=10.1.1.81.9737&rep=rep1&type=pdf.
  • 4Warn S,Apon A,Cothren J.Accelerating SIFT on hybrid clusters[C]// Proceedings of the ACM SIGSPATIAL 2nd International Workshop on High Performance and Distributed Geographic Information Systems.[S.l.]:ACM SIGSPATIAL,2011:2-9.
  • 5Mikolajczyk K,Schmid C.A performance evaluation of local descriptors[J].IEEE Tram Pattern Analysis and Machine Intelligence,2005,27(10):1615.
  • 6Jonathan Horgan,Francis Flannery,Daniel Toal.Towards real time vision based UUV navigation using GPU technology[C]//OCEANS 2009-EUROPE.Bremen:[S.l.],2009:1-6.
  • 7Seth Warn,Wesley Emeneker,Jackson Cothren,et al.Accelerating SIFT on parallel architectures[C]// IEEE International Conference on Cluster Computing and Workshops.[S.l.]:IEEE,2009:1-4.
  • 8YU Qiao,WEI Wang,LIU Jianzhuang,et al.A theory of phase singularities for image representation and its applications to object tracking and image matching[J].IEEE Transactions on Image Processing,2009,18(10):2153.
  • 9Marko Heikkil(a),MattiPietik(a)inen,Cordelia Schmid.Description of interest regions with local binary patterns[J].Pattern Recognition,2009,42(3):425.
  • 10YANG Jinkun, PEI Yijian, LI Bo, et al. Muhivideo Mosaic Based on SIFT Algorithm [ C ]//Computer Science and Network Technology (ICCSNT). 2011 International Conference. Harbin, China: IEEE, 2011: 1497-1501.

共引文献13

同被引文献28

引证文献4

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部