期刊文献+

Effect of relaxation on the energetics and electronic structure of clean Ag3PO4(111) surface 被引量:2

Effect of relaxation on the energetics and electronic structure of clean Ag_3PO_4(111) surface
原文传递
导出
摘要 The effect of relaxation on the energetics and electronic structure of clean Ag3PO4(111) surface has been studied, carried out using first-principles density functional theory(DFT) incorporating the GGACU formalism.After atomic relaxation of the Ag3PO4(111) surface, it is found that O atoms are exposed to the outermost surface,due to an inward displacement of more than 0.06 nm for the two threefold-coordinated Ag atoms and an outward displacement of about 0.004 nm for three O atoms in the sublayer. The atomic relaxations result in a large transfer of surface charges from the outermost layer to the inner layer, and the surface bonds have a rehybridization, which makes the covalence increase and thus causes the surface bonds to shorten. The calculated energy band structures and density of states of the Ag3PO4(111) surface present that the atomic relaxation narrows the valence band width0.15 e V and increases the band gap width 0.26 e V. Meantime, the two surface peaks for the unrelaxed structure disappear at the top of the valence band and the bottom of the conduction band after the relaxed structure, which induces the transformation from a metallic to a semi-conducting characteristic. The effect of relaxation on the energetics and electronic structure of clean Ag3PO4(111) surface has been studied, carried out using first-principles density functional theory(DFT) incorporating the GGACU formalism.After atomic relaxation of the Ag3PO4(111) surface, it is found that O atoms are exposed to the outermost surface,due to an inward displacement of more than 0.06 nm for the two threefold-coordinated Ag atoms and an outward displacement of about 0.004 nm for three O atoms in the sublayer. The atomic relaxations result in a large transfer of surface charges from the outermost layer to the inner layer, and the surface bonds have a rehybridization, which makes the covalence increase and thus causes the surface bonds to shorten. The calculated energy band structures and density of states of the Ag3PO4(111) surface present that the atomic relaxation narrows the valence band width0.15 e V and increases the band gap width 0.26 e V. Meantime, the two surface peaks for the unrelaxed structure disappear at the top of the valence band and the bottom of the conduction band after the relaxed structure, which induces the transformation from a metallic to a semi-conducting characteristic.
出处 《Journal of Semiconductors》 EI CAS CSCD 2016年第3期26-31,共6页 半导体学报(英文版)
基金 Project supported by the National Natural Science Foundation of China(Nos.51472081,51102150,61106046) the Development Funds of Hubei Collaborative Innovation Center(Nos.HBSKFMS2014003,HBSKFMS2014011) the Foundation for High-Level Talents(No.GCRC13014)
关键词 silver orthophosphate atomic relaxation electronic structure DFT silver orthophosphate atomic relaxation electronic structure DFT
  • 相关文献

参考文献1

二级参考文献4

共引文献21

同被引文献7

引证文献2

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部