期刊文献+

基于DCT系数的图像显著区域检测 被引量:1

Image Salient Region Detection Using DCT Coefficients
下载PDF
导出
摘要 针对传统非DCT域图像显著区域检测方法无法直接应用于压缩图像的问题,提出一种基于DCT系数的图像显著区域检测方法.首先利用DCT所得系数提取图像块的亮度、颜色和纹理特征;然后通过分析特征向量分布规律对频率最低的部分特征向量进行替换,并计算特征向量全局对比度;最后将构建的高斯系数矩阵与所得对比度结果融合,从而完成图像显著区域检测.仿真实验结果表明,与现有的基于压缩域的显著检测方法相比,该方法可获得更好的显著区域检测结果,并且有着较高的检测效率. At present, network transmission is an important component of image applications, such as online im-age retrieval, etc. However, the conventional image salient region detection methods based on uncompressed do-main can not be directly applied to the compressed image. To solve the above problem, a new image saliency de-tection method based on DCT coefficients is presented. At first, luminance, color and texture features of the im-age blocks were extracted based on the coefficients that obtained from DCT transform. Then distribution of fea-ture vectors was analyzed statistically, and partial feature vectors with lower frequency were replaced, and the global contrast of feature vectors was calculated based on the replacement results. Finally, the Gaussian coeffi-cient matrices and the previous results were fused, thus the salient region detection task was finished. The simula-tion results demonstrate that the proposed method can obtain better saliency detection results and higher detection efficiency compared to existing method based on compressed domain.
出处 《计算机辅助设计与图形学学报》 EI CSCD 北大核心 2016年第4期638-644,共7页 Journal of Computer-Aided Design & Computer Graphics
基金 国家科技支撑计划(2012BAH67F01) 国家自然科学基金(60832003 61071120)
关键词 图像显著性 DCT 视觉注意力 高斯模型 image saliency discrete cosine transform visual attention Gaussian model
  • 相关文献

参考文献20

  • 1Itti L, Koch C, Niebur E. A model of saliency-based vsual attentionfor rapid scene analysis[J]. IEEE Transactions on PatternAnalysis and Machine Intelligence, 1998, 20(11): 1254-1259.
  • 2Treisman A M. A feature-integration theory of attention[J].Cognitive Psychology, 1980, 12(1): 97-136.
  • 3Harel J, Koch C, Perona P. Graph-based visual saliency[C]//Proceedings of the Advances in Neural Information ProcessingSystems. Cambridge: MIT Press, 2006: 545-552.
  • 4Achanta R, Estrada F, Wils P, et al. Salient segion detection andsegmentation[M] //Lecture Notes in Computer Science. Heidelbery:Springer, 2008, 5008: 66-75.
  • 5于明,王倩,郭迎春.一种图像的显著区域提取方法[J].光电工程,2012,39(8):18-25. 被引量:6
  • 6Hou X D, Zhang L Q. Saliency detection: a spectral residualapproach[C] //Proceedings of the IEEE Conference on ComputerVision and Pattern Recognition. Los Alamitos: IEEE ComputerSociety Press, 2007: 1-8.
  • 7Yang Y, Sheng B, Wu W, et al. Image saliency detection basedon rectangular-wave spectrum analysis[J]. Multimedia Toolsand Applications, 2015, First online: 1-15.
  • 8赵三元,李凤霞,沈建冰,王清云.基于红黑小波的图像显著性检测[J].计算机辅助设计与图形学学报,2014,26(10):1789-1793. 被引量:5
  • 9Wallace G K. The JPEG still picture compression standard[J].Communications of the ACM, 1991, 34(4): 30-44.
  • 10Fang Y M, Chen Z, Lin W S, et al. Saliency detection in thecompressed domain for adaptive image retargeting[J]. IEEETransactions on Image Processing, 2012, 21(9): 3888-3901.

二级参考文献23

  • 1陈锻生,刘政凯.彩色图像边缘特征及其人脸检测性能评价[J].软件学报,2005,16(5):727-732. 被引量:17
  • 2Itti L, Koch C, Niebur E. A model of saliency-based visual attention for rapid scene analysis [J]. IEEE Trans on Pattern Analysis and Machine Intelligence(S0162-8828), 1998, 20(11): 1254-1259.
  • 3Stas Goferman, Lihi Zelnik-Manor, Ayellet Tal. Context-Aware Saliency Detection [C]//IEEE Conference on Computer Vision and Pattern Recognition (CVPR2010), June 13-18, 2010, 13: 2376-2383.
  • 4HOU Xiao-di, ZHANG Li-qing. Saliency detection: a spectral residual approach [C]//IEEE Conference on Computer Vision and PatternRecognition(CVPR2007), Minneapolis, USA, June 17-22, 2007: 1-8.
  • 5Achanta R. Frequency-tuned Salient Region Detection [C]// IEEE Conference on Computer Vision and Pattern Recognition, Miami, FL, USA, June 20-26, 2009: 1597-1604.
  • 6Wang J. Z. Corel 图像库 [BD/OL]. [2012-7-22]. http://code.google.com/p/cbmir/downloads/detail?name=Corel%E5%9B% BE%E5%83%8F%E5%BA%93.rar&can=2&q.
  • 7Rubinstein M, Shamir A, Avidan S. Improved seam carving for video retargeting [J]. ACM Trans. on Graphics (S0730-0301), 2008, 27(3): 612-615.
  • 8Tsotsos J K,Culhane S M,Wai W Y K,et al.Modeling visual attention via selective tuning[J].Artificial Intelligence,1995,78(1/2):507-545.
  • 9Olshausen B A,Anderson C H,Van Essen D C.A neurobiological model of visual attention and invariant pattern recognition based on dynamic routing of information[J].Journal of Neuroscience,1993,13(11):4700-4719.
  • 10hti L,Koch C,Niebur E.A model of saliency based visual attention for rapid scene analysis[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,1998,20 (11):1254-1259.

共引文献10

同被引文献11

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部