期刊文献+

非单调广义对角拟牛顿算法

NONMONOTONE GENERALIZED DIAGONAL QUASI-NEWTON ALGORITHM
下载PDF
导出
摘要 本文研究了无约束最优化的求解问题.利用新的对角拟牛顿校正和非单调技术,获得了一种非单调广义对角拟牛顿算法.新算法具有低存储、低计算量的特点,非常适合大规模问题的求解,推广了文献[8]的结果. In this paper, the method for solving unconstrained optimization is studied.By using the new diagonal quasi-Newton update and nonmonotone technique, a nonmonotone generalized diagonal quasi-Newton algorithm is proposed. The new method needs less memory capacitance and computational complexity. It is very effective and attractive for large scale unconstrained problems and generalizes the results of reference [8].
作者 周群艳 杭丹
出处 《数学杂志》 CSCD 北大核心 2016年第2期335-345,共11页 Journal of Mathematics
基金 江苏省高校自然科学研究项目(13KJB110007) 江苏理工学院基础及应用基础研究项目(KYY13012) 江苏理工学院博士启动基金项目(KYY13005)
关键词 弱拟牛顿方程 对角校正 非单调技术 全局收敛性 数值实验 weak quasi-Newton equation diagonal updating nonmonotone technique global convergence numerical experiment
  • 相关文献

参考文献16

  • 1Grippo L, Lampariello F, Lucidi S. A nonmonotone line search technique for Newton's method[J]. SIAM J. Numer. Anal., 1986, 23(4): 707 -716.
  • 2Deng N Y, Xiao Y, Zhou F J. Nonmontonic trust region algorithm[J]. J. Optim. Theory Appl., 1993, 76(2): 259-285.
  • 3Zhang H C, Hager W W. A nonmonotone line search technique and its application to unconstrained optimization[J]. SIAM J. Optim., 2004, 14(4): 1043-1056.
  • 4Mo J, Liu C, Yah S. A nonmonotone trust region method based on noninereasing technique of weighted average of the successive function values[J]. J. Comput. Appl. Math., 2007, 209(1): 97- 108.
  • 5Gu N, Mo J, Incorporating nonmonotone strategies into the trust region method for unconstrained optimization[J]. Comput. Math. Appl., 2008, 55(9): 2158-2172.
  • 6Barzilai J, Borwein J M. Two point step size gradient method[J]. IMA J. Numer. Anal., 1988, 8(1): 141- 148.
  • 7Raydan M. The Barzilai and Barwein gradient method for large scale unconstrained minimization problem[J]. SIAM J. Optim., 1997, 7(1): 26- 33.
  • 8时贞军,孙国.无约束优化问题的对角稀疏拟牛顿法[J].系统科学与数学,2006,26(1):101-112. 被引量:32
  • 9孙清滢,刘丽敏,王宣战.修正Grippo非单调线搜索规则的新对角稀疏拟牛顿算法[J].高等学校计算数学学报,2011,33(3):203-214. 被引量:2
  • 10孙清滢,郑艳梅.大步长非单调线搜索规则的Lampariello修正对角稀疏拟牛顿算法的全局收敛性[J].数学进展,2008,37(3):311-320. 被引量:14

二级参考文献18

  • 1孙清滢.GLOBAL CONVERGENCE RESULTS OF A THREE TERM MEMORY GRADIENT METHOD WITH A NON-MONOTONE LINE SEARCH TECHNIQUE[J].Acta Mathematica Scientia,2005,25(1):170-178. 被引量:12
  • 2时贞军,孙国.无约束优化问题的对角稀疏拟牛顿法[J].系统科学与数学,2006,26(1):101-112. 被引量:32
  • 3Barzilai J and Borwein J M. Two-point step size gradient methods. IMA Journal of Numerical Analysis, 1988, 8: 141-148.
  • 4Raydan M. On the Barzilai and Borwein choice of steplength for the gradient method. IMA Jouvanl of Numerical Analysis, 1993, 13: 321-326.
  • 5Raydan M and Svaiter B F. Relaxed steepest descent and Cauchy-Barzilai-Borwein method. Computational Optimization and Applications, 2002, 21: 155-167.
  • 6Yuhong Dai, Jinyun Yuan, and Ya-XiangYuan: Modified two-point stepsize gradient methods for unconstrained optimization. Computational Optimization and Applications, 2002, 22: 103-109.
  • 7Raydan M. The Barzilai and Borwein gradient method for large scale unconstrained minimization problems. SIAM J. Optim., 1997, 7(1): 26-33.
  • 8塞亚湘 孙文瑜.最优化理论与方法[M].北京:科学出版社,1997..
  • 9Dixon L W C. Conjugate directions without line searches. Journal of the Institute of Mthematics and Its Applications, 1973, 11: 317-328.
  • 10Grippo L, Lampariello F and Lucidi S. A class of nonmonotone stability methods in unconstrained optimization. Numevische Mathematik, 1991, 62: 779-805.

共引文献38

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部