期刊文献+

三个可分离算子凸优化的线性化方法

A LINEARIZED METHOD FOR THE SEPARABLE CONVEX PROGRAMMING WITH OBJECTIVE FUNCTION REPRESENTED AS THREE FUNCTIONS
下载PDF
导出
摘要 本文研究了三个可分离算子不含交叉变量的线性约束凸优化问题.利用定制的邻近点算法,对其变分不等式子问题进行线性化处理,并增加一邻近点项,使其子问题成为易于运算的单调线性变分不等式,得到了线性化定制的邻近点算法,并证明了全局收敛性,推广了文献中的研究结果. In this paper, we study the convex minimization problem with linear constraints and a block-separable objective function which is represented as the sum of three functions without coupled variables. Based on the customized proximal point algorithm, linearing its variable inequality subproblem and adding an approximate item to the subproblem, the new linearized method is offered and its global convergence is proved finally. The results have extended the corresponding studies documented.
出处 《数学杂志》 CSCD 北大核心 2016年第2期365-374,共10页 Journal of Mathematics
基金 教育部高校博士学科科研基金资助(20132121110009)
关键词 可分离算子线性约束问题 交替方向法 变分不等式 全局收敛性 linear constraints problems with separable operators alternating direction method of multipliers variational inequality global convergence
  • 相关文献

参考文献26

  • 1Tibshirani R, Saunders M, Rosset S, Zhu J, Knight K. Sparsity and smoothness via the fusedlasso[J]. J. Royal Stat. Soc. Ser. Bist. Meth., 2005, 67:91 -108.
  • 2Tao Min, Yuan XiaoMing. Recovering low-rank and sparse components of matrices from incomn- complete andnoisy observations[J]. Siam J. Contr. Opti., 2011, 21: 57-81.
  • 3Fukushima M. Application of the alternating directions method of multipliers to separable con- vex programming problems[J]. Comp. Opti. Appl., 1992, 2:93- 111.
  • 4Hestenes M. Multiplier and gradient methods[J]. J. Opti. The. Appl. , 1969, 4: 303-320.
  • 5Powell M. A method for nonlinear constraints in minimization problems[M]. New York: UKAEA, 1967.
  • 6Gabay D, Mercier B. A dual algorithm for the solution of nonlinear variational problems via timte element approximations[J]. Comp. Math. Appl., 1976, 2:17 -40.
  • 7Glowinski R, Marrocco A. Approximation parliaments finis d' ordre un et r@solution parp@nalis ation-dualit@ d' une classe de probl@mes non lin@aires[J]. RAIRO. Anal. Num6r, 1975, 9(2): 41- 76.
  • 8Chen G, Teboulle M. A proximal-based decomposition method for convex minimization problems[J]. Math. Frog., 1994, 64: 81-101.
  • 9Fukushima M. Application of the alternating directions method of multipliers to separable convex programming problems[J]. Comp. Opti. Appl., 1992, 2: 93-111.
  • 10Glowinski R, Le Tallec F. Augmented lagrangian and operator-splitting methods in nonlinear me- chanics[M]. Philadelphia: SIAM Stud. Appl. Math., 1989.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部