摘要
本文研究了三个可分离算子不含交叉变量的线性约束凸优化问题.利用定制的邻近点算法,对其变分不等式子问题进行线性化处理,并增加一邻近点项,使其子问题成为易于运算的单调线性变分不等式,得到了线性化定制的邻近点算法,并证明了全局收敛性,推广了文献中的研究结果.
In this paper, we study the convex minimization problem with linear constraints and a block-separable objective function which is represented as the sum of three functions without coupled variables. Based on the customized proximal point algorithm, linearing its variable inequality subproblem and adding an approximate item to the subproblem, the new linearized method is offered and its global convergence is proved finally. The results have extended the corresponding studies documented.
出处
《数学杂志》
CSCD
北大核心
2016年第2期365-374,共10页
Journal of Mathematics
基金
教育部高校博士学科科研基金资助(20132121110009)
关键词
可分离算子线性约束问题
交替方向法
变分不等式
全局收敛性
linear constraints problems with separable operators
alternating direction method of multipliers
variational inequality
global convergence