期刊文献+

基于状态监测的风电机组变桨系统故障诊断 被引量:14

Pitch system fault diagnosis for wind turbine based on condition monitoring
下载PDF
导出
摘要 以风电机组中故障率较高的变桨系统作为研究对象,从数据采集与监视控制系统的数据库中选择与变桨系统运行相关的特征参数,基于相似性原理,利用非线性状态评估方法,建立能够涵盖变桨系统全部正常运行状态的健康模型。当变桨系统发生故障时,会出现模型预测值与正常状态的偏差,根据每一个特征参数对偏差的影响来确定故障的原因。应用实例验证表明,该模型能够准确地识别故障类型,可以解决在排除故障及设备维修时,因缺少相关信息而造成停机时间过长、维修难度大等问题。 The wind turbine pitch system, which has high failure rate, is researched in this paper. First the pitch system feature parameters are selected from the SCADA system database; Then, based on the principle of similarity, the method of nonlinear state assessment is used to establish a health model,which covers all normal operating states of pitch system. When the pitch system fails, it will produce a deviation between the predicted value of model and the normal value, the deviation contribution rate of each characteristic parameter will indicate the type of fault. Finally, an example shows that the model can accurately identify the type of failure so as to reduce the downtime and the difficulty of maintenance caused by lack of relevant information about the accident.
出处 《可再生能源》 CAS 北大核心 2016年第3期437-440,共4页 Renewable Energy Resources
基金 中央高校基本科研业务费专项资金资助项目(2014MS138)
关键词 变桨系统 故障诊断 相似性原理 状态监测 非线性状态评估 pitch system fault diagnosis similarity principle condition monitoring nonlinear state estimate technique(NSET)
  • 相关文献

参考文献7

二级参考文献54

  • 1DAI JuChuan1,2,HU YanPing1,LIU DeShun1,2 & LONG Xin3 1 School of Electromechanical Engineering,Hunan University of Science and Technology,Xiangtan 411201,China,2 College of Mechanical and Electrical Engineering,Central South University,Changsha 410083,China,3 Hara XEMC Windpower Co.,Ltd.,Xiangtan 411000,China.Calculation and characteristics analysis of blade pitch loads for large scale wind turbines[J].Science China(Technological Sciences),2010,53(5):1356-1363. 被引量:7
  • 2刘光德,邢作霞,李科,姚兴佳.风力发电机组电动变桨距系统的研究[J].电机与控制应用,2006,33(10):31-34. 被引量:38
  • 3http ://www. skf. com
  • 4Crabtree C J, Feng Y, Tavner P J. Detecting incipient wind turbine gearbox failure., a signal analysis method for on-line condition monitoring[C]//Proceeding of European Wind Energy Conference, Poland, 2010.
  • 5Hameed Z, Hong Y S, Cho Y M, et al. Condition monitoring and fault detection of wind turbines and related algorithms: a review[J]. Renewable and Sustainable Energy Reviews, 2009, 13(1): 1-39.
  • 6Amirat Y, Benbouzid M, A1-Ahmar E. A brief status on condition monitoring and fault diagnosis in wind energy conversion systems[J]. Renewable and Sustainable Energy Reviews, 2009, 13(9): 2629-2636.
  • 7Lu Bin, Li Yaoyu, Wu Xin. A review of recent advance in wind turbine condition monitoring and fault diagnosis [C]//Proceedings of Power Electronics and Machines in Wind Application, Lincoln, 2009: 1-7.
  • 8Zaher A, McArther S D J, Infield D G, et al. Online wind turbine fault detection through automated scada data analysis[J]. Wind Energy , 2009, 12(6): 574-593.
  • 9Yang Wenxian, Tavner P J, Crabtree C J, et al. Costeffective condition monitoring for wind turbines[J]. IEEE TranslndustrialElectronics, 2010, 57(1): 263-271.
  • 10Simon J W, Xiang B J, Yang Wenxian. Condition monitoring of the power output of wind turbine generators using wavelets[J]. IEEE Trans. on Energy Conversion, 2010, 25(3): 715-721.

共引文献215

同被引文献96

引证文献14

二级引证文献76

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部