期刊文献+

基于石墨烯气凝胶的定形相变材料储热性能研究 被引量:6

Investigation on thermal energy storage characteristics of form-stable phase change materials supported by graphene aerogel
原文传递
导出
摘要 使用石墨烯气凝胶(graphene aerogel,GA)为导热骨架,十六醇作为相变材料,制备出一种用以储热的定形相变材料。利用FITR、XRD、SEM、激光闪光法和DSC等手段对样品的微观形貌、化学结构以关键热物性进行了表征,同时也测试了样品实际吸/放热的速率。结果表明,GA的多孔结构可以有效防止相变材料的泄露。同时,高导热的石墨烯在相变材料中建立起额外的导热通路,使得样品的导热系数提高了20%。重复吸放热50次后发现,样品的融化/凝固焓并没有因为GA的加入明显下降,分别为229.2和229.5kJ/kg。吸/放热温度曲线表明,在以导热为主的传热过程中,拥有更高导热系数的定形相变材料比纯十六醇具有更快的融化/凝固速率。而在自然对流为主的传热过程中,由于GA较强的毛细作用,十六醇的流动性被削弱,定形相变材料的融化/凝固速率低于纯十六醇。 1-hexadecanol was infiltrated into the open-cell structure of graphene aerogel(GA)to prepare a form-stable phase change material for thermal energy storage.The morphology,chemical structure and key thermophysical properties of the as-synthesized sample were characterized by FTIR,XRD,SEM,nano flash and DSC ways.The results demonstrate that the high porosity of GA can efectively prevent the liquid PCM from leakage.In addition,the extra thermal conduction pathway provided by GA enhances the thermal conductivity of pure 1-hexadecanol by 20%.After 50 heat storage/release cycles,no obvious decrease is observed in the melting and freezing enthalpies of GA/1-hexadecanol,which are 229.2 kJ/kgand 229.5 kJ/kg,respectively. Furthermore,the improved thermal conductivity endowed GA/1-hexadecanol sample with higher cooling/freezing rates during the procedure of conduction-governed heat transfer.However,during the heat transfer process dominated by natural convection,the high porosity of GA contributed to a higher capillary force,which leads to a greater flow resistance of 1-hexadecanol,thus the cooling/freezing rates of GA/1-hexadecanol are lower than the baselines of pure 1-hexacecanol.
出处 《热科学与技术》 CAS CSCD 北大核心 2016年第1期13-18,共6页 Journal of Thermal Science and Technology
基金 国家自然科学基金资助项目(51276159) 浙江省自然科学基金资助项目(LY16E060002)
关键词 石墨烯 气凝胶 定形 相变材料 导热系数 parafin aerogel form-stable PCMs thermal conductivity
  • 相关文献

参考文献17

  • 1姚元鹏,吴慧英,刘振宇.泡沫铜强化石蜡相变蓄热特性的数值分析[J].热科学与技术,2015,14(2):87-93. 被引量:15
  • 2SHARMA A, TYAGI V V, CHEN C R, et al. Review on thermal energy storage with phase change materials and applications [J]. Renewable and Sustainable Energy Reviews, 2009, 13: 318- 345.
  • 3KHODADAD I, FAN L W, BABAEI H. Thermal conductivity enhancement of nanostructure-based colloidal suspensions utilized as phase change mate- rials for thermal energy storage: A review [J]. Renewable and Sustainable Energy Reviews, 2013, 24:418-444.
  • 4FAN L, KHODADADI J M. Thermal conductivity enhancement of phase change materials for thermal energy storage: A review [J]. Renewable and Sustainable Energy Reviews, 2011, 15(1) :24-46.
  • 5BIENER J, STADERMANN M, SUSS M, et al. Advanced carbon aerogels for energy applications [J]. Energy and Environmental Science, 2011, 4:656-667.
  • 6XIAO X, ZHANG P. Morphologies and thermal characterization of paraffin/carbon foam composite phase change material [J]. Solar Energy Materials and Solar Cells, 2013, 117:451-461.
  • 7WANG Y M, TANG B T, ZHANG S F. Single- walled carbon nanotube/phase change Material composites:sunlight-driven, reversible, form-stable phase transitions for solar thermal energy storage [J]. Advanced Functional Materials, 2013, 23(35) :4354-4360.
  • 8LI Y Q, SAMAD Y A, POLYCHRONOPOULOU K, et al. From biomass to high performance solar- thermal and electric-thermal energy conversion and storage materials [J]. Journal of Materials Chem-istry:A, 2014, 2:7759-7765.
  • 9YES B, ZHANG Q L, HU D D, etal. Core-shell- like structured graphene aerogel encapsulating paraffin: shape-stable phase change material for thermal energy storage [J]. Journal of Materials Chemistry :A, 2015, 3: 4018-4025.
  • 10ZHANG Y J, GUO Q G, LI S Z, et al. Heat transfer enhancement of paraffin wax using graphite form for thermal energy storage [J]. Solar Energy Materials and Solar Cells, 2010, 94 (6) : 1011- 1014.

二级参考文献19

  • 1ZALBA B, MARIN J M, CABEZA L F, et al. Re- view on thermal energy storage with phase change: materials, heat transfer analysis and applications [J]. Applied Thermal Engineering, 2003, 23(3) : 251-283.
  • 2SHARMA A, TYAGI V V, CHEN C R, et al. Review on thermal energy storage with phase change materials and applications [J]. Renewable and Sustainable Energy Reviews, 2009, 13 (2) : 318-345.
  • 3LI M, WU Z, KAO H. Study on preparation, structure and thermal energy storage property of eaprie-palmitie aeid/attapulgite composite phase change materials [J]. Applied Energy, 2011, 88 (9) :3125-3132.
  • 4FAN L, KHODADADI J M. Thermal conductivity enhancement of phase change materials for thermal energy storage: a review [J]. Renewable and Sus- tainable Energy Reviews, 2011, 15(1):24-46.
  • 5STRITIH U. An experimental study of enhanced heat transfer in rectangular PCM thermal storage [J]. International Journal of Heat and Mass Transfer, 2004, 47(12):2841-2847.
  • 6KHODADADI J M, HOSSEINIZADEH S F. Nanoparticle-enhanced phase change materials (NEPCM) with great potential for improved ther- mal energy storage [J]. International Communica- tions in Heat and Mass Transfer, 2007, 34 (5) : 534-543.
  • 7ZENGJ L, SUN L X, XU F, et al. Study of a PCM based energy storage system containing Ag nanoparticles [J]. Journal of Thermal Analysis and Calorimetry, 2007, 87(2) :371-375.
  • 8ZHAO C Y, WU Z G. Heat transfer enhancement of high temperature thermal energy storage using metal foams and expanded graphite [J]. Solar En- ergy Materials and Solar Cells, 2011, 95(2): 636- 643.
  • 9HANX H, WANG Q, PARK Y G, etal. A re- view of metal foam and metal matrix composites for heat exchangers and heat sinks [J]. Heat Transfer Engineering, 2012, 33(12) :991-1009.
  • 10XIAO X, ZHANG P, LI M. Preparation and ther- mal characterization of paraffin/metal foam compos- ite phase change material [J]. Applied Energy, 2013, 112:1357-1366.

共引文献14

同被引文献49

引证文献6

二级引证文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部