期刊文献+

MEAN-FIELD LIMIT OF BOSE-EINSTEIN CONDENSATES WITH ATTRACTIVE INTERACTIONS IN R^2

MEAN-FIELD LIMIT OF BOSE-EINSTEIN CONDENSATES WITH ATTRACTIVE INTERACTIONS IN R^2
下载PDF
导出
摘要 Starting with the many-body SchrSdinger Hamiltonian in R2, we prove that the ground state energy of a two-dimensional interacting Bose gas with the pairwise attractive interaction approaches to the minimum of the Gross-Pitaevskii energy functional in the mean- field regime, as the particle number N → ∞ and however the scattering length → 0. By fixing N|k|, this leads to the mean-field approximation of Bose-Einstein condensates with attractive interactions in R^2. Starting with the many-body SchrSdinger Hamiltonian in R2, we prove that the ground state energy of a two-dimensional interacting Bose gas with the pairwise attractive interaction approaches to the minimum of the Gross-Pitaevskii energy functional in the mean- field regime, as the particle number N → ∞ and however the scattering length → 0. By fixing N|k|, this leads to the mean-field approximation of Bose-Einstein condensates with attractive interactions in R^2.
作者 郭玉劲 陆璐
出处 《Acta Mathematica Scientia》 SCIE CSCD 2016年第2期317-324,共8页 数学物理学报(B辑英文版)
基金 supported by the Scientific Research Foundation for the Returned Overseas Chinese Scholars,State Education Ministry of China,National Center for Mathematics and Interdisciplinary Sciences in China
关键词 Bose-Einstein condensation attractive interactions Gross-Pitaevskii func-tional mean-field approximation Bose-Einstein condensation attractive interactions Gross-Pitaevskii func-tional mean-field approximation
  • 相关文献

参考文献30

  • 1Anderson M H, Ensher J R, Matthews M R, et al. Observation of Bose-Einstein condensation in a dilute atomic vapor. Science, 1995, 269:198-201.
  • 2Baumgartner B, Solovej J P, Yngvason J. Atoms in strong magnetic fields: the high field limit at fixed nuclear charge. Comm Math Phys, 2000, 212:703-724.
  • 3Benguria R, Lieb E H. Proof of the stability of highly negative Ions in the absence of the pauli principle. Phys Rev Lett, 1983, 50:1771-1774.
  • 4Bloch I, Dalibard J, Zwerger W. Many-body physics with ultracold gases. Rev Mod Phys, 2008, 80:885-964.
  • 5Brezis H. Functional Analysis, Sobolev Spaces and Partial Differential Equations. New York: Springer, 2001.
  • 6Cazenave T. Semilinear Schrodinger Equations. Courant Lecture Notes in Mathematics 10. New York: Courant Institute of Mathematical Science/AMS, 2003.
  • 7Cooper N R. Rapidly rotating atomic gases. Adv Phys, 2008, 57: 539-616.
  • 8Dalfovo F, Giorgini S, Pitaevskii L P, et al. Theory of Bose-Einstein condensation in trapped gases. Rev Mod Phys, 1999, 71:463-512.
  • 9Davis K B, Mewes M O, Andrews M R, et al. Bose-Einstein condensation in a gas of sodium atoms. Phys Rev Lett, 1995, 75:3969-3973.
  • 10Erdos L, Schlein B, Yau H T. Rigorous derivation of the Gross-Pitaevskii equation with a large interaction potential. J Amer Math Soc, 2009, 22:1099-1156.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部