摘要
In this article, we give a new proof on the existence of infinitely many sign- changing solutions for the following Brezis-Nirenberg problem with critical exponent and a Hardy potential -△u-μ(u/|x|^2)=λu+|u|^2*-2u inΩ, u=0 on eΩ,where Ω is a smooth open bounded domain of R^N which contains the origin, 2*=2N/n-2 is the critical Sobolev exponent. More precisely, under the assumptions that N ≥ 7, μ ∈ [0, μ- 4), and μ=(N-2)^2/4, we show that the problem admits infinitely many sign-changing solutions for each fixed λ 〉 0. Our proof is based on a combination of invariant sets method and Lj usternik-Schnirelman theory.
In this article, we give a new proof on the existence of infinitely many sign- changing solutions for the following Brezis-Nirenberg problem with critical exponent and a Hardy potential -△u-μ(u/|x|^2)=λu+|u|^2*-2u inΩ, u=0 on eΩ,where Ω is a smooth open bounded domain of R^N which contains the origin, 2*=2N/n-2 is the critical Sobolev exponent. More precisely, under the assumptions that N ≥ 7, μ ∈ [0, μ- 4), and μ=(N-2)^2/4, we show that the problem admits infinitely many sign-changing solutions for each fixed λ 〉 0. Our proof is based on a combination of invariant sets method and Lj usternik-Schnirelman theory.
基金
supported by the Specialized Fund for the Doctoral Program of Higher Education and the National Natural Science Foundation of China