期刊文献+

一种基于人眼视觉特性的图像质量评价方法 被引量:2

An Image Quality Assessment Method Using Human Visual Characteristics
下载PDF
导出
摘要 为了有效地评价图像质量,该文提出一种应用人眼视觉特性的全参考图像质量评价方法。该方法主要考察了人眼的两个视觉特性,即韦伯定律和视觉注意机制,并利用这两个特性计算对应的差异激励图和视觉显著性图,将其作为能够反映图像失真的特征图,同时考虑了观察因素的影响,最后得到了失真图像的质量评价指标。实验结果表明,该方法在LIVE、CSIQ和LIVEMD三个图像库上有很好的表现。三个图像库的加权平均结果显示,本文方法的表现优于所有对比方法,包括近期提出的GMSD和VSI方法,说明本文方法的评价结果与主观感知不仅具有更好的一致性,而且具有很好的通用性和鲁棒性。 To assess image quality effectively,a new full-reference image quality assessment method sing human visual characteristics is proposed.This method mainly considers two characteristics of hum,visual system,i.e.,Weber's law and visual attention strategy,and the obtained differential excitati map and visual saliency map are used as indictors of image distortions to get the final image quality men which also incorporates the viewing conditions.The experiment results show that the proposed meth owns an excellent performance on three databases including LIVE,CSIQ and LIVEMD.The weighted a erage results indicate that the proposed method outperforms other methods,including the latest GMSD ai VSI,which means that the new algorithm occupies a better consistency with subjective evaluation and h good universality and robustness.
出处 《中国电子科学研究院学报》 北大核心 2015年第6期567-573,597,共8页 Journal of China Academy of Electronics and Information Technology
关键词 图像质量评价 人眼视觉特性 韦伯定律 差异激励 视觉显著性 Image quality assessment Human visual characteristics Weber's Law Differential Excitation Visual Saliency
  • 相关文献

参考文献22

  • 1Sheikh H R,Sabir M F,Bovik A C.A statistical evaluation of recent full reference image quality assessment algorithms[J].IEEE Transactions on Image Processing,2006,15(11):3443-3452.
  • 2Wu J,Lin W,Shi G,et al.Reduced-reference image quality assessment with visual information fidelity[J].IEEE Transactions on Multimedia,2013,12(7):1700-1705.
  • 3Liu D,Xu Y,Quan Y,et al.Reduced reference image quality assessment using regularity of phase congruency[J].Signal Processing:Image Communication,2014,29(8):844-855.
  • 4南栋,毕笃彦,查宇飞,张泽,李权合.基于参数估计的无参考型图像质量评价算法[J].电子与信息学报,2013,35(9):2066-2072. 被引量:26
  • 5Bong D B L,Khoo B E.Blind image blur assessment by using valid reblur range and histogram shape difference[J].Signal Processing:Image Communication,2014,29(6):699-710.
  • 6Wang Z,Bovik A C,Sheikh H R,et al.Image quality assessment:from error visibility to structural similarity[J].IEEE Transactions on Image Processing,2004,13(4):600-612.
  • 7Wang Z,Simoncelli E P,Bovik A C.Multiscale structural similarity for image quality assessment[C].IEEE Asilomar Conference on Signals,Systems and Computers,Pacific Grove,CA,USA,2003:1398-1402.
  • 8Wang Z,Li Q.Information content weighting for perceptual image quality assessment[J].IEEE Transactions on Image Processing,2011,20(5):1185-1198.
  • 9Sheikh H R,Bovik A C,Veciana G.An information fidelity criterion for image quality assessment using natural scene statistics[J].IEEE Transactions on Image Processing,2005,14(12):2117-2128.
  • 10Sheikh H R,Bovik A C.Image information and visual quality[J].IEEE Transactions on Image Processing,2006,15(2):430444.

二级参考文献18

  • 1Mansouri A, Aznaveh A, Torkamani-Azar F, et al.. hnage quality assessment using the singular value decomposition theorem[J]. Optical Review, 2009, 16(2): 49-53.
  • 2Ferzli R and Karam L J. A no reference objective sharpness metric using riemannian tensor[C]. 3rd International Workshop on Video Processing and Quality Metrics for Consumer Electronics (VPQM), Scottsdale, AZ, USA, 2007: 25-26.
  • 3Hautitere N, Tare1 J P, Aubert D, et al.. Blind contrast enhancement assessment by gradient ratioing at visible edges[J]. Image Analysis and Stereology Journal, 2008, 27(2): 87-95.
  • 4Cohen E and Yitzhaky Y. No-reference assessment of blur and noise impacts on image quality[J]. Signal, Image and Video Processing, 2010, 4(3): 289-302.
  • 5Zhai G, Zhang W, Yang X, et al.. Modeling blocking visual sensitivity profile[C]. IEEE International Conference on Multimedia and Expo, Toronto, Ontario, Canada, 2006: 485-488.
  • 6Liu H and Heynderickx I. A perceptually relevant no-reference blockiness metric based on local image characteristics[J]. Eurasip Journal on Advances in Signal Processing, 2009, 12(5): 1-14.
  • 7Brox T, Weickert J, Burgeth B, et al.. Nonlinear structure tensors[J]. Image Vision Computing, 2006, 24(1): 41-55.
  • 8Hung S C, Sen C H, and Ming H T. An efficient image retrieval based on HSV color space[C]. International Conference on Electrical and Control Engineering, Yichang, China, 2011: 5746-5749.
  • 9Caicedo J C, Kapoor A, and Kang S. Collaborative personalization of image enhancement[C]. Proceedings of 29th IEEE Conference on Computer Vision and Pattern Recognition, Colorado Spring, CO, USA, 2011: 249-256.
  • 10Wandell B A. Foundations of Vision[M]. Stamford: Sinauer Associates Inc. 1995:277 284.

共引文献25

同被引文献10

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部