期刊文献+

人下坡行走时对滑移扰动引起的步态失稳的自适应平衡反应 被引量:1

Human adaptive balance reaction to gait instability caused by slip disturbance during downhill walking
下载PDF
导出
摘要 针对人在下坡行走时常因滑移造成后向跌倒的现象,研究了下坡过程中滑移扰动引发的步态失稳,并利用足底压力分析与步态分析手段,探究了人体下肢潜在的自适应平衡反应。选择了10名健康男性受试者在坡度为0、1:12、1:10的干燥介质坡面和油介质坡面上进行了下坡行走对比试验,并采集分析了时一空步态参数和足底压力参数的变化规律。结果表明,不同坡度下坡行走遇滑移扰动后的自适应平衡反应存在明显差异。就整体参数而言,坡度为1:12、1:10时的调节反应具有一致性;对于个别参数,坡度为0时的调节反应与坡度为1:12、1:10时不同。足跟触地、承重期与预摆期均存在明显调节反应,这些时期是进行自适应平衡调节的重要时期。此项研究可为避免滑跌提供技术指导,为双足机器人下坡时步态规划提供参考数据。 Aiming at the slip caused backward fall phenomenia during people' s downhill walking, this study explored the gait instability caused by slip disturbance, the potential adaptive balance reaction of human lower limbs by using the methods of plantar pressure analysis and gait analysis. Ten healthy male subjects were selected to downhill walk respectively on the dry road surface and the slippery road surface under three different slopes of O, 1:12 and 1:10, and based on the data acquired from the experiment, the changing rules of spatiotemporal gait parameters, plantar pressure parameters and kinetic parameters were analyzed. The experimental results showed that the adaptive bal- ance reactions to the slip disturbances under the different slops were obviously different. In terms of the overall pa- rameters, the adjustment reactions under the slops of 1:12 and 1:10 were consistent. For a few parameters, the ad- justment reaction under the slope of 0 was different from that under the slopes of 1 : 12 and 1 : 10. Obvious adjust- ment reactions existed in the initial contact time, tant adaptive adjustment data for two-foot robots' periods. The study is of downhill gait planning loading response phase and preswing phase, which are the impor- guiding significance for avoiding slips and can provide reference
出处 《高技术通讯》 CAS CSCD 北大核心 2015年第12期1053-1061,共9页 Chinese High Technology Letters
基金 高等学校博士学科点专项科研基金(20131208110005)资助项目
关键词 生物医学工程 下坡 失稳 步态分析 自适应平衡 biomedical engineering, downhill, instability, gait analysis, adaptive balance
  • 相关文献

参考文献22

  • 1Chain R, Redfem M S. Lower extremity corrective reac- tions to slip events. Journal of Biomechanics, 2001, 34 ( 11 ) : 1439-1445.
  • 2Yamaguchi T, Yano M, Onodera H, et al. Effect of turn- ing angle on falls caused by induced slips during turning. Journal of Biomechanics, 2012, 45 ( 15 ) :2624-2629.
  • 3Beschomer K, Cham R. Impact of joint torques on heel acceleration at heel contact, a contributor to slips and falls. Ergonomics, 2008, 51 (12) : 1799-1813.
  • 4Lockhart T E, Smith J L, Woldstad J C. Effects of aging on the biomechanics of slips and falls. Human Factors, 2005, 74(4) :708-729.
  • 5Bhatt T, Wening J D, Pai Y C. Adaptive control of gait sta- bility in reducing slip-related backward loss of balance. Exoerimental Brain Research. 2006. 170( 1 ) :61-73.
  • 6Pai Y C, Yang F, Wening J D, et al. Mechanisms of limb collapse following a slip among young and older adults. Journal of Biomechanics, 2006, 39 (12) : 2194- 2204.
  • 7Fong D T, Mao D W, Li J X, et al. Greater toe grip and gentler heel strike are the strategies to adapt to slippery surface. Journal of Biomechanics, 2008, 41 (4) : 838- 844.
  • 8Oates A R, Frank J S, Patla A E. Control of dynamic sta- bility during adaptation to gait termination on a slippery surface. Experimental Brain Research, 2010, 201 ( 1 ) : 47-57.
  • 9Topper A K, Maki B E, Holliday P J. Are activity-based assessments of balance and gait in the elderly predictive of risk of falling and/or type of fall. Journal of American Geriatric Society, 1993, 41 (5) :479-487.
  • 10Smeesters C, Hayes W C, Mcmahon T A. Disturbance type and gait speed affect fall direction and impact loca-tion. Journal of Biomechanics ,2001, 34( 3 ) :309-317.

二级参考文献21

  • 1汤荣光.正常人足底静态和动态压力分布的测定[J].中国生物医学工程学报,1994,13(2):175-177. 被引量:32
  • 2陈雁西,俞光荣.F-Scan足底压力步态分析仪临床应用现状[J].国外医学(骨科学分册),2005,26(3):187-189. 被引量:34
  • 3Taylor A J,Menz HB,Keenan AM.Effects of experimentally induced plantar insensitivity on forces and pressures under the foot during normal walking[J].Gait and Posture,2004,20:232-237.
  • 4Chau T.A review of analytical techniques for gait data.Part Ⅰ:Fuzzy,statistical and fractal methods[J].Gait and Posture,2001,13(1):49 -66.
  • 5Stebbins JA,Harrington ME,Giacomozzi,et al.Assessment of sub-division of plantar pressure measurement in children[J].Gait and Posture,2005,22:372-376.
  • 6Morag E,Cavanagh PR.Structural and functional predictors of regional peak pressures under the foot during walking[J].Journal of Biomechanics,1999,32:359-370.
  • 7Bryant A,Tinley P,Singer K.Radiographic measurements and plantar pressure distribution in normal,hallux valgus and hallux limitusfeet[J].The Foot,2000,10(1):18 -22.
  • 8Cavanagh PR,Sims DS Jr,Sanders LJ.Body mass is a poor predictor of peak plantar pressure in diabetic men[J].Diabetes Care,1991,14:750 -755.
  • 9Birtane M,Tuna Hakan.The evaluation of plantar pressure distribution in obese and non-obese adults[J].Clinical Biomechanics,2004,19:1055-1059.
  • 10Gravante G,Russo G,Pomara F,et al.Comparison of ground reaction forces between obese and control young adults during quiet standing on a baropodometric platform[J].Clinical Biomechanics,2003,18:780-782.

共引文献40

同被引文献24

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部