期刊文献+

一类具有非局部源的退化抛物系统解的性质

THE PROPERTY OF THE SOLUTIONS FOR A DEGENERATE PARABOLIC SYSTEM WITH NONLOCAL SOURCES
原文传递
导出
摘要 研究了一类具有齐次Dirichlet边界条件和带有非局部反应项的退化抛物方程组解的性质。利用正则化方法,证明了解的存在唯一性,通过比较原理和上下解方法得到解整体存在和有限爆破的充分条件。 The properties of solutions for a degenerate parabolic system with null Dirichlet boundary conditions and nonlocal sources are investigate in this paper. The local existence of solution is proved by using regularization skill,and then by comparison theorem and upper-lower solution method,the sufficient conditions for the global existence and the finite time blow-up of solution to the system are established.
出处 《内蒙古农业大学学报(自然科学版)》 CAS 2015年第5期144-148,共5页 Journal of Inner Mongolia Agricultural University(Natural Science Edition)
基金 内蒙古自治区高等学校青年科技英才支持计划资助项目(NJYT-15-B10) 内蒙古自然科学基金资助项目(2013MS0202)
关键词 非局部源 退化抛物系统 局部存在 整体存在 有限爆破 Nonlocal source degenerate parabolic system local existence global existence finite time blow-up.
  • 相关文献

参考文献10

  • 1李树华.一类奇异非线性抛物方程弱解的存在唯一性[J].内蒙古农业大学学报(自然科学版),2007,28(1):169-176. 被引量:2
  • 2刘菊红,郝敦元.关于一个微分积分方程行波解的存在唯一性证明的分析[J].内蒙古农业大学学报(自然科学版),2009,30(3):218-222. 被引量:8
  • 3容跃堂,樊彩虹.一类带有非局部源的退化反应扩散方程组解的整体存在与爆破[J].纯粹数学与应用数学,2009,25(1):39-46. 被引量:5
  • 4Fujita H. On the blowing up of solutions of Cauchy problem for [J]. J. Fac. Sci. Univ. Tokyo Sect. A. Math, 1966(16):105 - 113.
  • 5Galaktionov V A. A boundary value problem for the nonlinear parabolic equation [J]. Differential Equation, 1981, 17 (5): 836 - 842.
  • 6Passo. Dal, S. Luckhaus. A degenerate diffusion problem not in divergence form [J]. Differential Equation, 1987, 69(1 ): I - 14.
  • 7Wang S, Wang M X, Xie C H. A nonlinear degenerate diffusion equation not in divergence form [Jl- Z Angew MathPhys, 2000, 51 : 149 - 159.
  • 8J. M. Chadam, A. Pieirce, H. M. Yin. The blow -up property of the solutions to some diffusion equations with localized non- linear reactions, J Math. Ann. Appl. , 1992(169) :313 - 328.
  • 9Li Y X, Deng W B, Xie C H. Global existence and nonexistence for degenerate parabolic system [J]. Proc. Amer. Math Soc, 2002, 130:3661 -3670.
  • 10Deng W B, Li Y X, Xie C H. Existence and nonexistence of global solutions of some non -local degenerate parabolic system [J]. Proc. Amer. Math Soc, 2003, 137(3): 1573-1582.

二级参考文献26

  • 1李德茂,魏建强.非对称有限元方法[J].内蒙古大学学报(自然科学版),1994,25(1):20-34. 被引量:8
  • 2容跃堂,马福敏.一类非线性扩散方程解的blow up速率估计[J].纯粹数学与应用数学,2006,22(2):284-288. 被引量:1
  • 3刘其林,李玉祥,高洪俊.非局部反应扩散方程组的爆破性质[J].数学学报(中文版),2006,49(4):869-882. 被引量:5
  • 4Anderson J R, Deng K. Global existence for degenerate parabolic equations with a non-local forcing[J]. Math. Anal. Methods Appl. Sci.,1997,20:1069-1087.
  • 5Galaktionov V A, Levine H A. A general approach to critical Fujita exponents in nonlinear parabolic problems[J]. Nonlinear Anal.,1998,34:1005-1027.
  • 6Souplet P. Blow-up in nonlocal reaction-diffusion equations[J]. SIAM J. Math. Anal.,1998,29:1301-1334.
  • 7Souplet P. Uniform blow-up profiles and boundary behavior for diffusion equations with nonlocal nonlinear source[J]. J. Differential Equations.,1999,153:374-406.
  • 8Galaktionov V A, Kurdyumov S P, Samarskii A A. A parabolic system of quasi-linear equations I[J]. Differential Equations,1983,19:1558-1571.
  • 9Galaktionov V A, Kurdyumov S P, Samarskii A A. A parabolic system of quasi-linear equations II[J]. Differential Equations, 1985,21:1049-1062.
  • 10Deng W B. Global existence and finite time blow up for a degenerate reaction-diffusion system[J]. Nonlinear Anal,2005,60:977-991.

共引文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部