期刊文献+

一类具有时滞的反应扩散Lotka-Volterra竞争系统行波解的存在性 被引量:1

Existence of Traveling Wave Solutions for Reaction-Diffusion Lotka-Volterra Competitive System with Delays
下载PDF
导出
摘要 研究了一类具有时滞的Lotka-Volterra竞争系统行波解的存在性.应用具有时滞的反应扩散系统行波解存在性理论,将所研究系统行波解存在性的问题转化为寻找该系统的一对上、下解.给出了该系统在无穷远处的渐进衰减行为,完善并改进了同类系统行波解存在性的结论. The existence of traveling wave solutions for two species Lotka-Volterra competitive system with delays was investigated.Based on the theory of the existence of traveling wave solutions for reactiondiffusion systems with delays,the main problem was transfered to look for a pair of upper and lower solutions for the system.And the asymptotic behavior of the system was given as an attenuated motion tending to the infinity.The study makes up and improves the results of the existence of traveling wave solutions of a class of systems.
出处 《上海理工大学学报》 CAS 北大核心 2016年第1期1-7,共7页 Journal of University of Shanghai For Science and Technology
基金 国家自然科学基金资助项目(11071164 11101282 11271260) 上海市教委科研创新项目(13ZZ118 14YZ096) 上海市一流学科(系统科学)建设项目(XTKX2012) 沪江基金资助项目(B14005)
关键词 时滞 LOTKA-VOLTERRA竞争系统 行波解 存在性 上下解 delay Lotka-Volterra competitive system traveling wave solution existence upper and lower solution
  • 相关文献

参考文献16

  • 1Kolmogorov A N. A study of the equation of diffusion with increase in the quantity of matter, and its application to a biological problem [J ]. Moscow University Bulletin of Mathematics, 1937(1) : 1 - 25.
  • 2Van Vuuren J H. The existence of traveling plane waves in a general class of competition-diffusion systems [J]- IMA Journal of Applied Mathematics, 1995,55(2) : 135 - 148.
  • 3Tang M M, File P C. Propagating fronts for competing species equations with diffusion [ J ]. Archive for Rational Mechanics and Analysis, 1980, 73 ( 1 ): 69 - 77.
  • 4Gourley S A, Ruan S. Convergence and travelling fronts in functional differential equations with nonlocal terms: a competition model [J]. Siam Journal on Mathematical Analysis, 2003,35 (3) : 806 - 822.
  • 5Conley C, Gardner R. An application of the generalized Morse index to travelling wave solutions of a competitive reaction-diffusion model [J]. Indiana University mathematics Journal, 1984, 33 (3) .. 319 - 343.
  • 6Gardner R A. Existence and stability of travelling wave solutions of competition models: a degree theoretic approach [ J ]. Journal of Differential Equations, 1982,44(3) ..343 - 364.
  • 7Kanon Y. Parameter dependence of propagation speed of travelling waves for competition-diffusion equations [J]. Siam Journal on Mathematical Analysis, 1995,26 (2) :340 - 363.
  • 8Kanel J, I, Zhou L. Existence of wave front solutions and estimates of wave speed for a competition- diffusion system [J ]. Nonlinear Analysis: Theory, Methods & Applications, 1996,27 (5) .. 579 - 587.
  • 9Lii G Y, Wang M X. Traveling wave front in diffusive and competitive Lotka-Volterra system with delays [J ]. Nonlinear Analysis: Real World Applications, 2010,11(3) .. 1323 - 1329.
  • 10Li W T, Lin G, Ruan S G. Existence of traveling wave solutions in delayed reaction-diffusion systems with applications to diffusion-competition systems I-J]. Nonlinearity, 2006,19 (6) : 1253 - 1273.

二级参考文献30

  • 1Kan-on Y. Parameter Dependence of Propagating Speed of Traveling Waves for Competition-diffusion Equation. SIAM. J. Math. Anal., 1995, 26:340 363.
  • 2Kanel J I, Zhou L. Exisence of Wave Front Solutions and Estimates of Wave Speed for a Competition- diffusion System. Nonlinear Analysis, TMA, 1996, 254:433 463.
  • 3Tang M M, Fife P C. Propagating Fronts for Competing Species Equations with Diffusion. Arch. Rational Mech. Anal., 1980, 73:69-77.
  • 4Schaaf K W. Asympotic Behavior and Travelling Wave Solutions for Parabolic Functional Differential Equations. Trans. Am. Math. Soc., 1987, 302:587 615.
  • 5Huang J H, Zou X F. Existence of Travelling Wavefronts of Delayed Reaction-diffusion Systems without Monotonicity. Discrete and Cont. Dyn. Sys., 2003, 9:925-936.
  • 6Ma S W. Traveling Wavefronts for Delayed Reaction-diffusion Systems via a Fixed Point Theorem. J. Diff. Equa., 2001, 171:294-314.
  • 7Wu J H, Zou X F. Travelling Wave Fronts of Reaction-diffusion Systems with Delays. J. Dyna. Diff. Equa., 2001, 13:651 687.
  • 8Yu Z X, Yuan R. Traveling Wave Fronts in Reaction-diffusion Systems with Spatic~temporal Delay and Applications. Discret. Contin. Dyn. Syst. (Series B), 2010, 13:709-728.
  • 9Zou X F, Wu J H. Existence of Travelling Wavefronts in Delayed Reaction-diffusion System via Monotone Iteration Method. Proc. Amer. Math. Soc., 1997, 125:2589-2598.
  • 10Li W T, Lin G, Ruan S G. Exisence of Traveling Wave Solutions in Delayed Reaction-diffusion Systems with Applications to Diffusion-competition Systems. Nonlinearity, 2006, 19:1253-1273.

共引文献1

同被引文献9

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部