期刊文献+

多特征融合的非刚性三维模型匹配算法研究 被引量:1

Non-rigid 3D Models Matching with Multi-feature Fusion
下载PDF
导出
摘要 特征描述符是影响非刚性三维模型匹配结果的关键因素,而单一特征只能描述三维模型某一方面的信息.为了克服单一特征在模型匹配时的局限性,进一步提高模型匹配的精确度,通过引入信息论中信息熵的概念,结合各单一特征匹配时的结果,计算得到各特征的权值,对多种特征(如热核特征(HKS)、能量分布特征(WKS)和模型表面积特征等)进行融合,作为非刚性三维模型匹配的特征.最后在SHREC’2014提供的标准测试数据集上进行试验,并与单一特征描述符的结果进行对比,验证了多特征融合得到的特征描述符要优于任一单一特征描述符,可以应用于非刚性三维模型检索系统中. Feature descriptors are the key factors influencing the result of non-rigid 3D model correspondence.But a single feature descriptor only contains one aspect of information of a 3D model.In order to overcome the limitation of single feature and further improve the accuracy of model correspondence,the entropy was introduced to calculate the weight of each single feature according to its correspondence results.The features of HKS(heat kernel signature),WKS(wave kernel signature)and surface area were fused with these weights.The effectiveness of the approach was evaluated by using the SHREC'2014 non-rigid 3D human models benchmark.In addition,the results outperform those of any state-of-the-art single feature descriptor,and can be used for nonrigid 3D model retrieval.
出处 《上海理工大学学报》 CAS 北大核心 2016年第1期81-86,共6页 Journal of University of Shanghai For Science and Technology
基金 国家重点实验室开放基金资助项目(BUAA-VR-14KF-04) 北京市自然科学基金资助项目(4162019) 北京市重点实验室专项基金资助项目(19008001069) 北京市教委科研计划一般项目(201610011010)
关键词 非刚性 信息熵 多特征 non-rigid entropy multi-feature
  • 相关文献

参考文献13

  • 1刘敏娟,崔建昆.手指可达工作空间的三维建模[J].上海理工大学学报,2006,28(1):95-98. 被引量:6
  • 2Li B,Lu Y J, Godil A, et al. A comparison of methods for sketch-based 3D shape retrieval [J]. Computer Vision and Image Understanding, 2014,119 : 57 - 80.
  • 3Yang Y B, Lin H, Zhang Y. Content-based 3D model retrieval: a survey[J]. IEEE Transactions on Systems, Man, and Cybernetics, Part C: Applications and Reviews,2007,37(6) :1081 1098.
  • 4LiCY, Hamza A B. Spatially aggregating spectral descriptors for nonrigid 3D shape retrieval: a comparative survey[J].Multimedia Systems,2014,20(3):253 281.
  • 5Litman R, Bronstein A M. Learning spectral descriptors for deformable shape correspondence[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2014,36(1 ) .. 171 - 180.
  • 6Pickup D,Sun X F,Rosin P L,et al. SHREC'14 track: shape retrieval of non-rigid 3D human models[C]// Eurographics Workshop on 3D Object Retrieval. Strasbourg: The Eurographics Association, 2014 .- 101 110.
  • 7Sun J, Ovsjanikov M, Guibas L. A concise and provably informative multi-scale signature based on heat diffusion[J]. Computer Graphics Forum, 2009,28 ( 5 ): 1383 - 1392.
  • 8Aubry M,Schlickewei U, Cremers D. The wave kernel signature: a quantum mechanical approach to shape analysis [ C] // Proceedings of IEEE International Conference on Computer Vision Workshops (ICCV Workshops). Barcelona: IEEE, 2011 .. 1626 - 1633.
  • 9Xin S Q, Wang G J. Improving then and Han' s algorithm on the discrete geodesic problem[J]. ACM Transactions on Graphics (TOG), 2009,28 (4) : 104.
  • 10Raviv D, Bronstein A M, Bronstein M M, et al. Mfine- invariant geodesic geometry of deformable 3D shapes [J]. Computers & Graphics, 2011,35 (3) : 692 - 697.

二级参考文献5

  • 1邵象清.人体测量手册[M].上海:上海辞书出版社,1980..
  • 2丁玉兰.人机工程学(修订本)[M].北京:北京理工大学出版社,1999..
  • 3刘敏娟.[D].上海:上海理工大学,2004.
  • 4BULLOCK M I.The determination of functional arm reach boundaries for operation of manual controls[J].Ergonomics,1974,17(3):375-388.
  • 5崔建昆.人体食指工作空间研究[J].上海理工大学学报,2002,24(3):226-229. 被引量:3

共引文献5

同被引文献4

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部