期刊文献+

给出不确定性激励下的动态响应边界--一种非随机振动分析方法 被引量:3

GIVING DYNAMIC RESPONSE BOUNDS UNDER UNCERTAIN EXCITATIONS——A NON-RANDOM VIBRATION ANALYSIS METHOD
下载PDF
导出
摘要 提出了一种非随机振动分析方法,可给出系统在不确定性激励下的动态响应边界,从而为实验信息相对缺乏的不确定性振动分析及未来的可靠性设计提供一种新的计算工具.采用非概率凸模型过程而非传统的随机过程描述不确定性动态激励,仅需知道激励在任意时刻点的边界信息而非精确概率分布,从而有效降低对大样本量的依赖性.针对单自由度和多自由度系统,建立了相应的非随机振动分析算法,以求解系统在不确定性动态激励下的响应区间;另外,也给出了蒙特卡罗仿真方法,为非随机振动提供一种最为一般的分析工具.最后,通过3个数值算例验证了本文方法的有效性.非随机振动分析方法可以作为传统随机振动理论的补充,在工程不确定性结构动力学分析及结构可靠性设计领域发挥作用. A non-random vibration analysis method is proposed in this paper, which calculates the dynamic response bounds of vibrational systems under time-variant uncertain excitations. It provides a prominsing alternative computational tool for uncertain vibration analysis in case of lack of experimental information and the corresponding reliability design in the future. The non-probabilistic convex model process, rather than traditional stochastic process, is used to describe uncertain dynamic excitations because the former needs only the bound information instead of precise probability distribution at any time point and therefore dependence on large sample size is weakened effectively. Based on the convex model process, non-random vibration analysis algorithms are formulated to obtain dynamic response bounds of SDOF system and MDOF system under time-variant uncertain excitations, respectively. Besides, corresponding Monte Carlo method is proposed to verify accuracy of the response bounds calculated and provide a general analytical tool for non-random vibration analysis. Finally, the feasibility of the non-random vibration analysis method is validated by several numerical examples. The proposed non-random vibration analysis method could provide a promising supplementfor random vibration theory, and thereby plays an important role in structural uncertain dynamic analysis and reliability design.for engineering problems.
出处 《力学学报》 EI CSCD 北大核心 2016年第2期447-463,共17页 Chinese Journal of Theoretical and Applied Mechanics
基金 国家自然科学基金(11172096) 国家优秀青年基金(51222502) 全国优博专项基金(201235)资助项目
关键词 非随机振动 不确定性激励 动态响应边界 凸模型过程 动态不确定性 non-random vibration analysis time-variant uncertain excitations dynamic response bounds convex model process time-variant uncertainty
  • 相关文献

参考文献32

  • 1Crandall SH. Random Vibration. Cambridge: The MIT Press, 1958.
  • 2Lin YK. Probabilistic Theory of Structural Dynamics. New York: McGraw-Hill, 1967.
  • 3Morrow CT, Muchmore RB. Shortcomings of present methods of measuring and simulating vibration environments. ASME J Appl Mech, 1955, 22:367-371.
  • 4Kiureghian AD. A response spectrum method for random vibration analysis of MDF systems. Earthquake Engineering & Structural Dynamics, 1981, 9(5): 419-435.
  • 5Caprani CC. Application of the pseudo-excitation method to assess- ment of walking variability on footbridge vibration. Comput Struct, 2014, 132:43-54.
  • 6Zhang YW, Zhao Y, Zhang YH, et al. Riding comfort optimization of railway trains based on pseudo-excitation method and symplectic method. JSound lb, 2013, 332 (21): 5255-5270.
  • 7Caughey TK. Derivation and application of the Fokker-Planck equa- tion to discrete nonlinear dynamic systems subjected to white ran- dom excitation. Journal of the Acoustical Society of America, 1963, 35(11): 1683.
  • 8Fuller AT. Analysis of nonlinear stochastic systems by means of the Fokker-Planck equation. International Journal of Control, 1969, 9(6): 603-655.
  • 9Crandall SH. Perturbation techniques for random vibration of non- linear systems. JAcoust Soc Am, 1963, 35(11): 1700-1705.
  • 10Roberts JB, Spanos PD. Stochastic averaging: an approximate method of solving random vibration problems. International Jour- nal of Non-Linear Mechanics, 1986, 21(2): 111-134.

二级参考文献28

  • 1李杰,陈建兵.随机结构非线性动力响应的概率密度演化分析[J].力学学报,2003,35(6):716-722. 被引量:65
  • 2钟万勰.结构动力方程的精细时程积分法[J].大连理工大学学报,1994,34(2):131-136. 被引量:509
  • 3李杰.随机结构分析的扩阶系统方法(Ⅰ)——扩阶系统方程[J].地震工程与工程振动,1995,15(3):111-118. 被引量:12
  • 4张炳根 赵玉芝.科学与工程中的随机微分方程[M].北京:海洋出版社,1981..
  • 5Crandall S H. First-crossing probabilities of the linear oscillator. Journal of Sound and Vibration, 1970; 12:285-299
  • 6李桂青,曹宏等.结构动力可靠性理论及其应用.北京:地震出版社,1993;1-55
  • 7朱位秋.随机振动.北京:科学出版社,1 998:474-510
  • 8Chen J J, Duan B Y, Zeng Y G. Study on dynamic reliability analysis of the structures with multidegree-of-freedom. Computers and Structures, 1997; 62(5): 877-881
  • 9Kawano K, Venkataramana K. Dynamic response and reliability analysis of large offshore structures. Computer Methods in Applied Mechanics and Engineering,1999; 168:255-272
  • 10Brenner C E, Bucher C. A contribution to the SFEbased reliability assessment of nonlinear structures under dynamic loading. Probabilistic Engineering Mechanics, 1995; 10:265-273

共引文献72

同被引文献17

引证文献3

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部