期刊文献+

石墨烯负载金属钌用于锂-空气电池的正极材料

Composite of Graphene and Ruthenium for Cathode of Li-air Battery
下载PDF
导出
摘要 通过溶液法制备钌/石墨烯(Ru/G)复合材料,用作锂-空气电池的正极材料。通过充放电测试、循环伏安(CV)和电化学阻抗(EIS)研究了锂-空气电池的电化学性能。结果表明:Ru/G复合材料作为锂-空气电池的正极材料,明显提高了氧化还原反应的催化活性,改善了电化学反应性能。在电流密度为500mA·g-1时,首次充放电比容量分别为13136mAh·g-1和13578mAh·g-1,充放电的过电位降低了约0.35V。当固定充放电比容量为1000mAh·g-1,采用恒流充放电模式,可稳定循环30次。 Ruthenium nanoparticles were loaded on the graphene via solution method. The obtained ruthenium/ graphene (Ru/G) composite was used for a cathode of Li-air batteries. The electrochemical performance of Li-air batteries was characterized by charge-discharge test, cyclic voltammetry (CV) and electrochemical impedance (EIS). The results demonstrated that Ru/G composite significantly increased the catalytic activity of redox reactions, and improved the performance of the electrochemical reaction, compared with pure graphene. At a current density of 500 mA·g^-1, the initial charge and discharge capacity was up to 13136 mAh·g^-1 and 13578 mAh·g^-1, respectively. When the capacity was limited to 1000 mAh·g^-1, the fabricated Li-air battery lasted for 30 galvanostatic charge-discharge cycles without the capacity decay.
出处 《材料导报》 EI CAS CSCD 北大核心 2016年第6期41-44,共4页 Materials Reports
基金 国家自然科学基金(51162006,51362009) 海南省国际科技合作专项(KJHZ2015-02) 海南省重点项目(ZDXM2015118) 中西部计划学科重点建设(ZXBJH-XK009)
关键词 石墨烯 金属钌 锂-空气电池 催化剂 过电位 graphene, ruthenium, Li-air battery, catalyst, overpotential
  • 相关文献

参考文献21

  • 1Armand M, Tarascon J M. Building better batteries [J]. Nature, 2008,451 (7179) : 652.
  • 2Ottakam Thotiyl M M, Freunberger S A, Peng Z, et al. A stable cathode for the aprotic Li-Oz battery [J]. Nat Mater, 2013,12 (11) : 1050.
  • 3Oh S H, Black R, Pomerantseva E, et al. Synthesis of a metallicmesoporous pyrochlore as a catalyst for lithium-O2 batteries [J]. Nat Chem,2012,4(12) : 1004.
  • 4Jung H G, Hassoun J, Park J B, et al. An improved high-perform- ance lithium-air battery [J]. Nat Chem,2012,4(7):579.
  • 5Lee J S, Kim S T, Cao R, et al. Metal-air batteries with high energy density: Li-air versus Zn-air [J]. Adv Energy Mater, 2011,1 (1) : 34.
  • 6Bruce P G, Freunberger S A, Hardwick L J, et al. Li-O2 and Li-S batteries with high energy storage [J]. Nat Mater,2012,11(1):19.
  • 7Wang J, Li Y, Sun X. Challenges and opportunities of nanostrue- tured materials for aprotic rechargeable lithium-air batteries [J]. Nano Energy,2013,2(4) :443.
  • 8Peng Z, Freunberger S A, Chen Y, et al. A reversible and higher- rate Li-Oz battery [J]. Science, 2012,337 (6094) : 563.
  • 9Cheng F, Chen J. Metal-air batteries: From oxygen reduction elec- trochemistry to cathode catalysts [J]. Chem Soc Rev, 2012,41(6): 2172.
  • 10Shao Y, Park S, Xiao J, et al. Electroeatalysts for nonaqueous li- thium-air batteries: Status, challenges, and perspective [J]. ACS Catal,2012,2(5) : 844.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部