期刊文献+

基于热加工图的Cu-Cr-Zr-P合金的热变形特性 被引量:1

Hot deformation behaviors of Cu-Cr-Zr-P alloy based on processing map
下载PDF
导出
摘要 在Gleeble-1500D热/力模拟试验机上进行高温等温单道次压缩试验,探讨Cu-0.8Cr-0.3Zr-0.03P合金在变形温度和应变速率分别为650-950℃和0.001-10 s^-1条件下的热变形特性。通过真应力-真应变曲线的采集数据计算出合金高温热压缩时的本构方程和热变形激活能Q,根据动态模型绘制真应变为0.3和0.5的热加工图,并结合显微组织分析合金的变形机理,确定热加工失稳区间。研究表明:功率耗散因子η随变形温度递升呈增大趋势,合金的流变软化机理由动态回复逐渐向动态再结晶转变。得出热压缩过程的的最优加工范围为:温度为730-875℃,应变速率为0.1-1 s^-1。 The hot deformation behaviors of Cu-0. 8Cr-0. 3Zr-0. 03 P alloy were investigated at 650-950 ℃ and strain rate range of 0. 001-10s^-1through hot compression tests on a Gleeble-1500 D thermal simulater. The constitutive equations and hot deformation activation energy Q were obtained according to the test data of true stress-strain curves. Based on dynamic materials model,the processing maps for the alloy obtained at strains of 0. 3 and 0. 5 were used to predict the region of deformation instability and deformation mechanism. The results show that the power dissipation factor η increases with the increasing of the temperature,the deformation mechanism transforms from dynamic recovery to dynamic recrystallization. The optimum processing parameters of hot deformation in the range of this experiment can also be attained by the maps,in which the hot temperature is 730-875 ℃ and the strain rate is 0. 1-1 s^-1.
出处 《材料热处理学报》 EI CAS CSCD 北大核心 2016年第3期230-234,共5页 Transactions of Materials and Heat Treatment
基金 国家自然科学基金(51101052) 河南省高等学校青年骨干教师资助计划(2012GGJS-073) 河南省教育厅自然科学研究计划(2011B430013) 河南科技大学青年科学基金(2011QN48)
关键词 Cu-0.8Cr-0.3Zr-0.03P合金 热压缩变形 本构方程 流变应力 热加工图 Cu-0 8Cr-0 3Zr-0 03P hot compression deformation constitutive equation flow stress processing map
  • 相关文献

参考文献14

二级参考文献25

  • 1程建奕,汪明朴,李周,方善峰,郭明星,刘施峰.纳米Al_2O_3粒子弥散强化铜合金冷加工及退火行为[J].稀有金属材料与工程,2004,33(11):1178-1181. 被引量:24
  • 2王艳,王明家,蔡大勇,熊良银,王青峰.高强度奥氏体不锈钢的热变形行为及其热加工图[J].材料热处理学报,2005,26(4):65-68. 被引量:35
  • 3Tang N Y,Mater Sci Tech,1985年,1卷,270页
  • 4Song Kexing, Xing Jiandong, Dong Qiming, et al. Internal oxidation ofdilute Cu-Al alloy powers with oxidant of Cu20[ J]. Materials Scienceand Engineering A, 2004 , 380(1/2) : 117-122.
  • 5Sellars C M,Mctegart W J. On the mechanism of hot deformation[ J].Acta Metall, 1966,14(9) : 1136-1138.
  • 6Bruni C ’ Forcellese A,Gabrielli F. Hot workability and model for flowstress of NIMONIC 115 Ni-base superalloy [ J]. Journal of MaterialsProcessing Technology, 2002, 125-126: 242-247.
  • 7Zener C, Hollomon J H. Effect of strain-rate upon the plastic flow ofsteel[J]. JApplPhys,1944, 15(1): 22-27.
  • 8Witusiewicz V T, Arpshofen I, Seifert H J,et al. Enthal- py of mixing of liquid and undercooled liquid ternary and quaternary Cu-Ni-Si-Zr alloys[J]. Journal of Alloys and Compounds,2002,337 : 155-167.
  • 9Suzuki S, Shibutani N, Mimura K,et al. Improvement in strength and electrical conductivity of CuNiSi alloy by ag-ing and cold rolling[J]. Journal of Alloys and Com- pounds,2006,417 : 116-120.
  • 10Lee J, Jung Y, Lee E S,et al. Microstrueture and proper ties of titanium boride dispersed Cu alloys fabricated by spray forming [J]. Materials Science and Engineering A. 2000,277(2) :274-283.

共引文献153

同被引文献19

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部