期刊文献+

结合全局与双重局部信息的社交推荐 被引量:3

Social Recommendation Combining Global and Dual Local Information
下载PDF
导出
摘要 随着Web2.0的飞速发展,社交推荐逐渐成为推荐领域近几年的研究热点。如何更有效地利用用户的社交关系是社交推荐的关键,目前的社交推荐算法主要引入的是用户之间的直接联系(明确关系)。将社交关系进一步细分为明确关系和隐含关系,并结合历史评分得到的用户声誉信息刻画了由用户全局信息(声誉)与局部信息(明确关系和隐含关系)所构成的推荐系统框架。与现有的社交推荐算法相比,所提出的算法更全面地分析了用户的社交关系,且具有良好的可解释性。在Douban数据集和Epinions数据集上进行了实验,并将本算法与主流的推荐算法进行了比较,结果表明本算法具有更好的推荐精度。 With the rapid growth of Web2.0,social recommendation has become one of the hot research topics in the last few years.It is the key point to improve recommender systems using social contextual information in a more efficient way.The existing social recommendation approaches mainly take advantage of user's direct connection(explicit relation).This paper detailed social relation as explicit relation and implicit relation and obtained the user's reputation by using his/her historic records.Then we proposed a recommendation framework capturing user's global social relation(reputation)and local social relation(explicit relation and implicit relation).Using two real datasets,Douban and Epinions,we conducted a experimental study to investigate the performance of the proposed model GDLRec.We compared our approach with existing representative approaches.The results show that GDLRec outperforms other methods in terms of prediction accuracy.
出处 《计算机科学》 CSCD 北大核心 2016年第2期57-59,94,共4页 Computer Science
基金 安徽大学2014年本科生创新创业项目(201410357036) 安徽大学"211工程"三期第三批杰出青年科学研究培育基金(KJQN1116)资助
关键词 社交推荐 矩阵分解 声誉 隐含关系 Social recommendation Matrix factorization Reputation Implicit relation
  • 相关文献

参考文献1

二级参考文献25

  • 1Resnick P, Iakovou N, Sushak M, Bergstrom P, Riedl J. GroupLens: an open architecture for collaborative filtering of netnews. In: Proceedings of the 1994 Computer Supported Cooperative Work. Chapel Hill: ACM, 1994. 175-186.
  • 2Hill W C, Stead L, Rosenstein M, Furnas G W. Recommending and evaluating choices in a virtual community of use. In: Proceedings of the 1995 SIGCHI Conference on Human Factors in Computing Systems. Denver: ACM, 1995. 194-201.
  • 3Lam S K, Riedl J. Shilling recommender systems for fun and profit. In: Proceedings of the 13th International Conference on World Wide Web. New York, USA: ACM, 2004. 393-402.
  • 4O'Mahony M P, Hurley N J, Kushmerick N, Silvestre G C M. Collaborative recommendation: a robustness analysis. ACM Transactions on Internet Technology (TOIT), 2004, 4(4): 344-377.
  • 5Mobasher B, Burke R, Sandvig J J. Model-based collaborative filtering as a defense against profile injection attacks. In: Proceedings of the 21st National Conference on Artificial Intelligence and the 18th Innovative Applications of Artificial Intelligence Conference. Boston, Massachusetts, USA: AAAI, 2006.
  • 6Gunes I, Kaleli C, Bilge A, Polat H. Shilling attacks against recommender systems: a comprehensive survey. Artificial Intelligence Review, 2014, 42(4): 767-799.
  • 7Mobasher B, Burke R, Williams C, Bhaumik R. Analysis and detection of segment-focused attacks against collaborative recommendation. In: Proceedings of the 7th International Workshop on Knowledge Discovery on the Web. Chicago, IL: Springer Berlin Heidelberg, 2006. 96-118.
  • 8Burke R D, Mobasher B, Williams C, Bhaumik R. Classification features for attack detection in collaborative recommender systems. In: Proceedings of the 12th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. Philadelphia, PA, USA: ACM, 2006. 542-547.
  • 9Mehta B, Nejdl W. Attack resistant collaborative filtering. In: Proceedings of the 31st Annual International ACM SIGIR Conference on Research and Development in Information Retrieval. New York, USA: ACM, 2008. 75-82.
  • 10O'Mahony M P, Hurley N J, Silvestre G C M. Efficient and secure collaborative filtering through intelligent neighbor selection. In: Proceedings of the 16th European Conference on Artificial Intelligence. Valencia, Spain: IOS Press, 2004. 383-387.

共引文献14

同被引文献15

引证文献3

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部