期刊文献+

基于滑动窗口Hurst指数的心电分析研究 被引量:3

Research of Heart Rate Variable Analysis Based on Sliding Window Hurst
下载PDF
导出
摘要 心率变异性(Heart Rate Variability,HRV)指心率节奏快慢随时间所发生的变化,可以作为一种无创的方式来诊断人们的生理和心理状态。目前的心率变异性分析主要集中在临床应用或者科学研究中,且往往采用的是离线分析的方式。基于Android平台提出了基于滑动窗口Hurst指数的心电分析方法。Android设备通过无线、蓝牙、IOIO板等多种方式连接到移动或可穿戴的医疗传感器。对于采集的心电信号数据,使用了基于滑动窗口的Hurst指数序列来进行分析。在Hurst指数序列的基础上,提出了CMHurst和CStdHurst指标来识别心脏的生理状态。为了验证方法的可行性,将PhysioBank心电数据库的数据文件仿真为一个模拟传感器设备,由Android客户端实时读取数据并对其加以分析。实验结果显示,基于滑动窗口的Hurst心电分析方法可以识别出健康和不健康的心脏生理状态。 Heart rate variability(HRV)is the physiological phenomenon of variation in the time interval between heartbeats,and HRV analysis can be used as a diagnosis method for assessing the physiological and psychological states.Up to now,most HRV analyse have been done offline and only have being applied in clinical application and research.The paper proposed a real-time HRV signal sampling and analysis system based on Android platform.This system uses the IOIO board,Wifi or bluetooth to make a connection between Android devices and mobile or wearable health sensors.This paper used slide window based Hurst exponent series to analyze the sampling data.It uses two indices,the cumulative mean of Hurst series(CMHurst)and the cumulative standard deviation of Hurst series(CStdHurst),to estimate the heart health status.The indices were calculated from the windowed estimated Hurst series.To verify the validity of this method,the indices were tested by some databases from PhysioBank.The experiment results show this method can distinguish the groups who have normal rhythm or abnormal rhythm.
作者 吕太之
出处 《计算机科学》 CSCD 北大核心 2016年第2期259-262,共4页 Computer Science
基金 高等学校博士点专项基金(20093219120025) 江苏高校科研成果产业化推进项目(JHZD2012-21)资助
关键词 心率变异性 赫斯特指数 滑动窗口 长相关 安卓平台 Heart rate variability(HRV) Hurst exponent Sliding window Long range dependent(LRD) Android platform
  • 相关文献

参考文献2

二级参考文献21

  • 1季虎,孙即祥,林成龙.基于离散平稳小波变换的心电信号去噪方法[J].计算机应用,2005,25(6):1318-1320. 被引量:10
  • 2张和君,张跃.基于小波变换的心电信号综合检测算法研究[J].计算机工程与设计,2006,27(20):3831-3834. 被引量:11
  • 3Bert-Uwe Kohler, Carsten Hennig, Reinhold Orglmeister. The principles of software QRS detection[J]. IEEE Engineering in Medicine and Biology,2002,21:42-57.
  • 4Karsten Stemickel. Automatic pattern recognition in ECG time series [J]. Computer Methods and Programs in Biomedicine, 2002,68:109-115.
  • 5AGRAWAL P, LIU C, SARKAR N. Interaction between human and robot: An affect-inspired approach [ J]. Interaction Studies, 2008, 9(2) : 230 - 257.
  • 6KULIC D, CROFT E A. Affcctive state estimation for human-robot interaction [ J]. IEEE Transactions on Robotics, 2007, 23(5):991 - 1000.
  • 7HORLINGS R. Emotion recognition using brain activity[ D]. Delft, The Netherlands: Delft University of Technology, 2008.
  • 8PICARD R W, VYZAS E, HEALEY J. Toward machine emotional intelligence: Analysis of affective physiological state [ J]. IEEETransactions on Pattern Analysis and Machine Intelligence, 2001, 23(10): 1175-1191.
  • 9KIM K H, BANG S W, KIM S R. Emotion recognition system using short-term monitoring of physiological signals [ J]. Medical and Bio- logical Engineering and Computing, 2004,42(3) : 419 - 427.
  • 10HAAG A, GORONZY S, SCHAICH P. Emotion recognition using bio-sensors: First step towards an automatic system [ J]. Affective Dialogue Systems, LNCS 3068. Berlin: Springer, 2004:36 -48.

共引文献8

同被引文献18

引证文献3

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部