期刊文献+

贝叶斯网络结构加速学习算法 被引量:1

Accelerating Structure Learning of Bayesian Network
下载PDF
导出
摘要 结构学习是应用贝叶斯网络(BN)的基础。提出一种新的基于约束的学习类算法APC(Accelerated PC),它基于一系列局部结构的推导获得BN。APC不但继承了经典的PC(Peter&Clark)算法优先执行低阶条件独立(CI)测试的优点,而且能够从已执行的CI测试中推导相关拓扑信息,并利用其来挑选并优先执行更可能d-分割节点X和Y的候选CI测试。该策略可有效避免在搜索过程中执行无效的CI测试,例如APC算法在实验中较PC算法节省高达50%的计算量,同时实现了质量相同的学习效果。 Structure learning is the basis for the application of Bayesian networks(BN).A novel algorithm called APC was proposed to recovery the whole structure via sequential induction of local structures.APC inherits the most feature of PC algorithm,i.e.effectively avoiding high-dimensional conditional independence(CI)tests.Besides,it constructs and sorts candidate sets which possibly d-separate any pair of nodes,Xand Y,based on information implied in early conducted CI tests and known features of BN topology.Then,CI tests involving highly ranked candidate set are performed with priority.This strategy is expected to avoid fruitless CI tests,and up to 50% saving is observed on APC over PC in our experimental study.
出处 《计算机科学》 CSCD 北大核心 2016年第2期263-268,272,共7页 Computer Science
基金 国家自然科学基金资助项目(61305058 61300139) 厦门科技计划基金资助项目(3505Z20133027) 华侨大学科研基金资助项目(11Y0274 12HJY18) 中央高校基本科研基金资助项目(11J0263)资助
关键词 贝叶斯网络 结构学习 基于约束的学习 条件独立性测试 Bayesian network Structure learning Constraint-based learning Conditional independence test
  • 相关文献

参考文献4

二级参考文献205

  • 1郭凤娟,张安,孙永强,曹璐.基于OWA算子的贝叶斯网络空地战场威胁评估研究[J].系统仿真学报,2009,21(S2):72-74. 被引量:7
  • 2李德毅,孟海军,史雪梅.隶属云和隶属云发生器[J].计算机研究与发展,1995,32(6):15-20. 被引量:1261
  • 3戴朝华,朱云芳,陈维荣.云自适应遗传算法[J].控制理论与应用,2007,24(4):646-650. 被引量:39
  • 4PELIKAN M, GOLDBERG D E. Linkage prob- lem, distribution estimation and Bayesian net works[J]. Evolutionary Computation, 2000, 8 (3) : 311-340(in Chinese).
  • 5KENNEDY J, EBERHART R. Particle swam optimization[C].// Proceedings of IEEE Interna tional Conference on Neural Networks. Perth: WA, 1995:1 942-1 948.
  • 6EBERHART R, KENNEDY J. A new optimizer using particle swarm theory[C] // Proceedings of the 6th International Symposium. Nagoya Micro- Machine and Human Science, 1995.. 39 43.
  • 7赵新文,蔡琦.舰艇核动力一回路装置[M].武汉:海军工程大学,2001.
  • 8Koller D, Firedman N. Probabilistic Graphical Models: Principles and Techniques. Cambridge: The MIT Press, 2009.
  • 9Wainsright M J, Jordan M I. Graphical models, exponential families, and variational inference. Foundations and Trends? in Machine Learning, 2008, 1(1-2): 1-305.
  • 10Pourret O, Naim P, Marcot B. Bayesian Networks: A Practical Guide to Applications. Chichester: John Wiley, 2008.

共引文献36

同被引文献2

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部