期刊文献+

带时间约束的co-location模式挖掘 被引量:4

Co-location Patterns Mining with Time Constraint
下载PDF
导出
摘要 空间数据挖掘的相关研究大多数是基于理想化数据和实例平等的思想,而忽略了实际场景中存在的时间约束条件。将实例存在的时间区间作为约束条件,重新定义了空间邻近关系R,提出了带有时间约束的频繁模式挖掘算法TI,并以时间重叠作为剪枝条件,提出了剪枝算法TI-C。通过实证数据分析得出:在相同数据集下,TI-C算法的效率要优于TI,采用TI-C算法得到的频繁模式个数要比join-based算法少,同时采用TI-C算法得到的频繁模式能更精确、真实地反映实际场景中对象的并置关系。 Most of the research achievements of spatial data mining are based on the ideal spatial data and the idea of examples equality,ignoring the time constraint condition existing in the actual scene.This paper considered the existent time interval of the instance as constraint condition,redefined spatial neighborhood relation R,proposed spatial frequent pattern mining algorithm TI with time constraint,and by using time overlap as pruning condition,proposed pruning algorithm TI-C.Through empirical data analysis,under the same data set,the efficiency of TI-C algorithm is better than that of TI,the frequent pattern number of TI-C algorithm is less than that of join-based algorithm,and the frequent pattern of TI-C algorithm can accurately and truly reflect the object's co-location relation of the actual scene.
作者 曾新 杨健
出处 《计算机科学》 CSCD 北大核心 2016年第2期293-296,302,共5页 Computer Science
基金 大理大学青年教师科研基金(KYQN201325) 大理大学博士科研启动基金(KYBS201311)资助
关键词 频繁模式 时间重叠率 空间邻近关系 时间约束 Frequent pattern Time overlap rate Spatial neighborhood relation Time constraint
  • 相关文献

参考文献2

二级参考文献21

  • 1黄毅群,卢正鼎,胡和平,李瑞轩.分布式环境下保持隐私的关联规则挖掘算法[J].计算机工程,2006,32(13):12-14. 被引量:7
  • 2陈晓明,李军怀,彭军,刘海玲,张璟.隐私保护数据挖掘算法综述[J].计算机科学,2007,34(6):183-186. 被引量:16
  • 3Huang Y, Shekhar S, Xiong H. Discovering colocation patterns from spatial data sets: A general approach. IEEE Transactions on Knowledge and Data Engineering, 2004, 16(12) : 1472- 1485.
  • 4Yoo J S, Shekhar S. A partial join approach for mining colocation patterns//Proceedings of the ACM International Symposium on Advances in Geographic Information Systems (ACMGIS). Washington, USA, 2004:241 -249.
  • 5Yoo J S, Shekhar S, Celik M. A join less approach for co location pattern mining: A summary of resuhs//Proceedings of the IEEE International Conference on Data Mining (ICDM). Houston, USA, 2005:813 816.
  • 6Wang Li-Zhen, Bao Yu Zhen, l.u J, Yip J. A new join less approach for co-location pattern mining//Proceedings of the IEEE 8th International Conference on Computer and lnfor mation Technology (CIT 2008). Sydney, AustraLia, 2008 197-202.
  • 7Wang Li-Zhen, Zhou Li-Hua, Lu J. Yip J. An order clique based approach for mining maximal co locations. Information Sciences, 2009, 179(19): 3370 -3382.
  • 8Wang Li-Zhen, Chen Hong-Mei, Zhao Li-Hong et al. Efficiently mining co location rules on interval data//Proceedings of the 6th International Conference on Advanced Data Mining and Applications(ADMA 2010). Chongqing, China, 2010: 477-488.
  • 9Zadeh L. Fuzzy sets. Information and Control, 1965, 8(3) 338-353.
  • 10Altman D. Fuzzy set theoretic approaches for handling im precision in spatial analysis. International Journal of Geo granhical Information Science, 1994, 8(3): 271- 289.

共引文献31

同被引文献10

引证文献4

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部