期刊文献+

多特征级联式检测变轮廓运动目标 被引量:1

Multi-Attribute Cascading Identify Variable Contour Moving Targets
下载PDF
导出
摘要 总结了变轮廓运动目标的特点,并将其应用到方向盘上操作手数的检测中;提出了先进行方向盘自动定位,再快速检测其上操作手数目的技术路线;预定位中运用Haar特征的AdaBoost分类器进行初检,得到包含目标轮廓的图像;利用HOG特征的Real-AdaBoost分类器进行精确检测,并确定操作手位置点集;对取得的操作手质心点坐标集进行奇异值分解并拟合椭圆,获取图像中方向盘位置,最终实现操作手的快速准确检测;算法在保证了原算法的实时性和准确性外,提高了检测系统应用的灵活性。 It summarized the characteristics of variable contour moving targets,and applied it to detect operating hands' position on steering wheel.It raised a means by automaticly detecting the position of steering wheel firstly,and after that detecting the operating hands.For gathering the operating hands' positions,this paper used AdaBoost on Haar to detect preliminarily and Real-AdaBoost on HOG to detect precisely.It fitted ellipse using SVD based on mass center coordinates of operating hands to simulate steering wheel and detected the operating hands quickly and accurately.Algorithm not only ensures the real-time and accuracy of the original one,but improves flexibility.
出处 《计算机测量与控制》 2016年第3期263-266,共4页 Computer Measurement &Control
基金 交通运输部信息化科技项目(2012-364-835-110) 北京工商大学科研能力计划项目
关键词 智能交通 操作手 特征提取 奇异值分解 intelligent transportation operating hands feature extraction SVD
  • 相关文献

参考文献11

二级参考文献40

  • 1毛喆,初秀民,严新平,吴超仲.汽车驾驶员驾驶疲劳监测技术研究进展[J].中国安全科学学报,2005,15(3):108-112. 被引量:76
  • 2任艳斐.直方图均衡化在图像处理中的应用[J].科技信息,2007(4):37-38. 被引量:37
  • 3陆璇.现代应用数学手册:概率统计与随机过程卷[M].北京:清华大学出版社,2000.188-238.
  • 4Matthews N D, An P E, Charnley D, Harris C J. Vehicle detec- tion and recognition in greyscale imagery[J]. Control Engineering Practice, Printed in Great Britain, 1996,4 (4) : 473 - 479.
  • 5Sidla O, Paletta L, Lypetskyy Y, Jarmer C. Vehicle recognition for highway lane survey[A]. The 7th International IEEE Con- ference on Intelligent Transportation Systems[ C]. Washington, D.C., USA, 2004: 531 - 536.
  • 6Schneidennan H. A statistical approach to 3D object detection applied to faces and cars[A]. Proceedings WEE Conference on Computer Vision and Pattern Recognition [C ]. Hilton Head, SC, USA, 2000,1 : 746 - 751.
  • 7Sun Z, Bebis G, Miller R. On-road vehicle detection using Gabor filters and support vector machines[A]. IEEE 14th Interna- tional Conference on Digital Signal Processing[C]. Santorini, Hellas(Greece). 2002:1019 - 1022.
  • 8Sun Z, Bebis G, Miller R. Improving the performance of onroad vehicle detection by combining Gabor and wavelet fea- turesE A]. The IEEE 5th International Conference on Intelligent Transportation Systems, [ C ]. Singapore, 2002:130 - 135.
  • 9Wen-Chung Chang;Chih-Wei Cho. Online boosting for vehicle detection[J]. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics. Published by Institute of Electrical and Electronics Engineers,Inc. ,2010,40(3):892- 902.
  • 10Viola P, Jones M. Rapid object detection using a boosted cascade of simple features[A]. In Proceeding of International Conference on Computer Vision and Pattern Recognition [ C ]. Kauai, HI,USA 2001,1:511 - 518.

共引文献251

同被引文献13

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部