期刊文献+

分数阶微积分定义的一致性在HOL4中的验证 被引量:4

Formalization of Consistency of Fractional Calculus in HOL4
下载PDF
导出
摘要 分数阶微积分有3种常用的定义:Grunwald-Letnikov定义、Riemann-Liouville定义以及Caputo定义,3种定义之间存在着一定的联系,在一定条件下,它们可以相互转换。首先在高阶逻辑定理证明器HOL4中使用实数、积分、极限、超越函数等定理建立了基于Caputo定义的分数阶微积分形式化模型;然后验证了该定义与Grunwald-Letnikov定义、Riemann-Liouville定义之间的关系,实现了这3种常用定义在HOL4中的转换,在一定程度上使这3种定义达到了统一,完善了高阶逻辑定理库。 Fractional calculus has three commonly used definitions,including Grunwald-Letnikov,Riemann-Liouville and Caputo definition.There are connections among these three kinds of definitions.They are interchangeable under certain conditions.This paper established a formal model of fractional calculus based on Caputo definition in the higher-order logic proof tool HOL4 using real,integral,limitation and transcendental functions.In order to achieve the conversion of these three definitions in HOL4,we verified the relationships among Caputo,Grunwald-Letnikov and Riemann-Liouville definition.This work will make these three definitions unite in a certain extent,and will also perfect the theo-rem library of higher-order logic.
出处 《计算机科学》 CSCD 北大核心 2016年第3期23-26,53,共5页 Computer Science
基金 国际科技合作计划项目(2010DFB10930 2011DFG13000) 国家自然科学基金项目(60873006 61070049 61170304 61104035 61174145 61201378) 北京市自然科学基金项目 北京市优秀人才项目(4122017 KZ201210028036 KM201010028021 2012D005016000011)资助
关键词 分数阶微积分 定理证明 Caputo定义 一致性 Fractional calculus Theorem proving Caputo definition Consistency
  • 相关文献

参考文献3

二级参考文献22

  • 1Tsu-sheng Chang,Mahendra P.Singh.Seismic analysis of structures with a fractional derivative model of viscoelastic dampers[J].Earthquake Engineering and Engineering Vibration,2002,1(2):251-260. 被引量:14
  • 2万哲先.二项式系数和Gauss系数[J].数学通报,1994,33(10). 被引量:6
  • 3Richter S. Formalizing integration theory, with an application to probabilistie algorithms [D]. Teehnische Universitat Munchen, Department of Informatics, Germany, 2003.
  • 4Fleuriot J D. On the mechanization of real analysis in isabelle/ hol[C] // Theorem Proving in Higher Order Logics.. 13th Inter- national Conference, TPHOLs 2000, Lecture Notes in Computer Science. volume 1869,2000.
  • 5Cruz-Filipe L. Constructive Real Analysis:a Type-Theoretical Formalization and Applications [D] .University of Nijmegen, A- pril 2004.
  • 6Butler R W. Formalization of the Integral Calculus in the PVS Theorem Prover [J]. Journal of Formalized Reasoning, 2009,2 (1):1- 26.
  • 7Harrison J. Theorem Proving with the Real Numbers [R]. Technical Report number 408. University of Cambridge Com- puter Laboratory, December 1996.
  • 8Henstock-Kurzweil integral [EB/OL]. http://en, wikipedia. org/wiki/Henstock% E2 % 80%93Kurzweil_integral.
  • 9Gordon R A. The Integrals of Lebesgue, Denjoy, Perron, and Henstock [M]. American Mathematical Society, 1994:150-169.
  • 10Abdullah N, Akbarpour B, Tahar S. Error Analysis and Verifi- cation of an IEEE 802. 11 OFDM Modem using Theorem Pro- ving [J]. Electronic Notes in Theoretical Computer Science, Elsevier B. V. Pub. , 2009,242(2): 3-30.

共引文献6

同被引文献25

引证文献4

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部