摘要
分数阶微积分有3种常用的定义:Grunwald-Letnikov定义、Riemann-Liouville定义以及Caputo定义,3种定义之间存在着一定的联系,在一定条件下,它们可以相互转换。首先在高阶逻辑定理证明器HOL4中使用实数、积分、极限、超越函数等定理建立了基于Caputo定义的分数阶微积分形式化模型;然后验证了该定义与Grunwald-Letnikov定义、Riemann-Liouville定义之间的关系,实现了这3种常用定义在HOL4中的转换,在一定程度上使这3种定义达到了统一,完善了高阶逻辑定理库。
Fractional calculus has three commonly used definitions,including Grunwald-Letnikov,Riemann-Liouville and Caputo definition.There are connections among these three kinds of definitions.They are interchangeable under certain conditions.This paper established a formal model of fractional calculus based on Caputo definition in the higher-order logic proof tool HOL4 using real,integral,limitation and transcendental functions.In order to achieve the conversion of these three definitions in HOL4,we verified the relationships among Caputo,Grunwald-Letnikov and Riemann-Liouville definition.This work will make these three definitions unite in a certain extent,and will also perfect the theo-rem library of higher-order logic.
出处
《计算机科学》
CSCD
北大核心
2016年第3期23-26,53,共5页
Computer Science
基金
国际科技合作计划项目(2010DFB10930
2011DFG13000)
国家自然科学基金项目(60873006
61070049
61170304
61104035
61174145
61201378)
北京市自然科学基金项目
北京市优秀人才项目(4122017
KZ201210028036
KM201010028021
2012D005016000011)资助