摘要
为了提高基本伊藤算法搜索最优解的效率,在状态转移策略中引入C-W节约法,并根据伊藤算法迭代的特性改进了距离启发因子和路径权重的更新规则,同时在寻优过程中对各个因子的权值系数作线性调整,保证了初期种群的多样性和后期遍历寻优的能力。根据种群中粒子的适应度设计了针对波动算子和漂移算子的自适应扰动策略,以避免算法在迭代过程中出现搜索停滞的现象。构造了4个邻域搜索算子,并在此基础上提出了基于幂函数载波的混沌局部优化方法,该方法提高了局部搜索的充分性和遍历性。仿真结果证明了所提算法的有效性。
In order to improve the efficiency of ITO algorithm searching optimal solution,the C-W saving method was introduced to the strategy of state transition,meanwhile,the distance heuristic factor and the update rule of path weight were modified on the basis of the characteristic of ITO algorithm.For the purpose of enhancing the diversity of initial population and the final optimization capability,the weight coefficient of each factor was adjusted linearly in the process of optimization.According to the fitness of particles,the adaptive disturbance was designed for fluctuation operator and drifting operator to overcome the ITO easy-to-stagnation phenomenon.Based on the four local search operators,a chaotic local optimization method using power function carrier was proposed,which greatly improves the ergodicity and the sufficiency of the local search.The simulation results show the effectiveness of the proposed algorithm.
出处
《计算机科学》
CSCD
北大核心
2016年第3期266-270,共5页
Computer Science
关键词
伊藤算法
状态转移策略
自适应扰动
混沌局部优化
ITO algorithm
Strategy of state transition
Adaptive disturbance
Chaotic local optimization