期刊文献+

高速铁路列控系统车载模式显示识别研究

Recognition of Modes of Train Control System for High-speed Railway
下载PDF
导出
摘要 高速铁路列车运行控制系统车载设备通过人机界面(DMI)图像显示和按键点击等方式和司机进行交互。通过DMI信息自动识别实时获取列控车载设备工作模式,对实现车载设备状态监控、自动测试等,均具有重要意义。本文基于支持向量机(SVM)和粒子群算法(PSO)等方法,对在DMI上显示的列控车载工作模式的分类识别进行研究。在对DMI图像进行预处理得到包含车载工作模式的图像区域后,首先对图像采用2DPCA方法进行降维并提取特征,然后采用支持向量机(SVM)进行训练和学习,其中SVM参数的优化采用改进的粒子群算法(PSO)。仿真实验表明,经过训练后的分类器可快速准确识别DMI显示的车载工作模式,平均识别率达到98.3%。该方法对DMI其它显示信息的识别具有参考意义。 The on-board equipment of Chinese Train Control System (CTCS) interacts with drivers through the image display and the buttons of the Driver-Machine Interface(DMI). Through the automatic recognition of DMI information, real-time acquisition of the working modes of the on-board equipment of CTCS is significant to accomplish the monitoring and automatic test of the status of the on-board equipment. Based on the SVM (Support Vector Machine) and PSO (Particle Swarm Optimization) algorithms, in this paper, a study was con- ducted on the classification and recognition of the working modes of the on-board equipment displayed on the DMI. Firstly the 2DPCA (2 Dimension Principal Component Analysis) was used to extract the feature of the images and reduce the dimension of the feature after the pretreatment of the DMI images. Then the SVM (Sup- port Vector Machine) was applied to build the classifier and the parameters of the SVM were optimized using improved PSO (Particle Swarm Optimization). The simulation results showed that the classifier trained by sample data can recognize automatically and accurately the Chinese character, or the working modes of the CTCS system, with the average recognition rate of 98.3%. The method discussed in this paper can be used for the recognition of the other information displayed on the DMI of CTCS system.
出处 《铁道学报》 EI CAS CSCD 北大核心 2016年第3期92-97,共6页 Journal of the China Railway Society
基金 轨道交通控制与安全国家重点实验室2014年自主研究课题(RCS2014ZT06)
关键词 列控系统 CTCS 图像识别 支持向量机 改进的粒子群算法 train control system CTCS image recognition SVM PSO
  • 相关文献

参考文献12

  • 1张勇,覃燕,李凯,陈建球.CTCS-3级列控系统车载设备人机界面信息的识别方法[J].中国铁道科学,2010,31(4):92-99. 被引量:4
  • 2DEEPA B, KUMAR S S. Optical Character Recognition: An Overview and an Insight [[C]//Proceedings of 2014 IEEE International Conference on Control, Instrumenta- tion, Communication and Computational Technologies. New York:IEEE, 2014:1361.
  • 3WANG Zhenyan. Chinese Character Recognition Method Based on Image Processing and Hidden Markov Model [C]// Proceedings of 2014 IEEE Fifth International Con- ference on Intelligent Systems Design and Engineering Ap- plications (ISDEA). New York : IEEE, 2014 : 276-279.
  • 4PATEL D K, SOM T, SINGH M K. Multiresolution Technique to Handwritten English Character Recognition Using Learning Rule and Euclidean Distance Metric[C]// Proceedings of 2014 IEEE International Conference on Sig- nal Processing and Communication (ICSC). New York: IEEE, 2013: 207-212.
  • 5中国铁路总公司文件.铁总运E20lC30号CTCS-2/3级列控车载设备人机界面(DMI)显示暂行规范[z].北京:中国铁路总公司,2014.
  • 6LI X, PANG Y, YUAN Y. Ll-norm-based 2DPCA[J].IEEE Transactions on Systems, Man, and Cybernetics. Part B, Cybernetics: A Publication of the IEEE Systems, Man, and Cybernetics Society, 2010, 40(4) : 1170-1175.
  • 7VAISHNAV A P, GANATRA A P, BHENSDADIA C K. Support Vector Machine Classification Methods: A Re- view and Comparison with Different Classifiers[J]. Data Mining and Knowledge Engineering, 2011, 3(1): 45-52.
  • 8王泳,胡包钢.应用统计方法综合评估核函数分类能力的研究[J].计算机学报,2008,31(6):942-952. 被引量:22
  • 9林升梁,刘志.基于RBF核函数的支持向量机参数选择[J].浙江工业大学学报,2007,35(2):163-167. 被引量:143
  • 10POLI R, KENNEDY J, BLACKWELL T. Particle Swarm Optimization[J]. Swarm Intelligence, 2007, 1(1): 33-57.

二级参考文献44

共引文献218

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部