期刊文献+

Single-mode hybrid Al Ga In As/Si octagonal-ring microlaser with stable output

Single-mode hybrid Al Ga In As/Si octagonal-ring microlaser with stable output
原文传递
导出
摘要 Hybrid octagonal-ring microlasers are investigated for realizing a stable output from a silicon waveguide based on a two-dimensional simulation. The inner radius of the ring is optimized to achieve single-mode and low-threshold operation. Using the divinylsiloxane-benzocyclobutene (DVS-BCB) bonding technique, a hybrid A1GaInAs/Si octagonal-ring microlaser vertically coupled to a silicon waveguide is fabricated with a side length of 21.6 pm and an inner radius of 15 pm. A single transverse-mode operation is achieved with a threshold current density of 0.8 kA/cm2 and a side-mode suppression ratio above 30 dB, and a stable output from the lower silicon waveguide is obtained. Hybrid octagonal-ring microlasers are investigated for realizing a stable output from a silicon waveguide based on a two-dimensional simulation. The inner radius of the ring is optimized to achieve single-mode and low-threshold operation. Using the divinylsiloxane-benzocyclobutene (DVS-BCB) bonding technique, a hybrid A1GaInAs/Si octagonal-ring microlaser vertically coupled to a silicon waveguide is fabricated with a side length of 21.6 pm and an inner radius of 15 pm. A single transverse-mode operation is achieved with a threshold current density of 0.8 kA/cm2 and a side-mode suppression ratio above 30 dB, and a stable output from the lower silicon waveguide is obtained.
出处 《Chinese Optics Letters》 SCIE EI CAS CSCD 2016年第3期55-58,共4页 中国光学快报(英文版)
基金 supported by the High Technology Project of China(No.2012AA012202) the NSFC/RGC joint project(No.61431166003)
  • 相关文献

参考文献21

  • 1S. Koehl, A. Liu, and M. Paniccia, Opt. Photon. News 22(3), 24 (2011).
  • 2M. Streshinsky, R. Ding, Y. Liu, A. Novack, C. Galland, A. E.-J. Lim, P. Guo-Qiang Lo, T. Baehr-Jones, and M. Hochberg, Opt. Photon. News 24(9), 32 (2013).
  • 3Y. Li, Y. Zhang, and A. W. Poon, Photon. Res. 3, 5 (2015).
  • 4D. A. B. Miller, Proc. IEEE 97, 1166 (2009).
  • 5A. W. Fang, H. Park, O. Cohen, R. Jones, M. J. Paniccia, and J. E. Bowers, Opt. Express 14, 9203 (2006).
  • 6D. Liang, M. Fiorentino, S. Srinivasan, J. E. Bowers, and R. G. Beausoleil, IEEE J. Sel. Top. Quantum Electron. 17, 1528 (2011).
  • 7C. Zhang, S. Srinivasan, Y. B. Tang, M. J. R. Heck, M. L. Davenport, and J. E. Bowers, Opt. Express 22, 10202 (2014).
  • 8L. J. Yuan, L. Tao, H. Y. Yu, W. X. Chen, D. Lu, Y. P. Li, G. Z. Ran, and J. Q. Pan, IEEE Photon. Technol. Lett. 25, 1180 (2013).
  • 9J. Van Campenhout, L. Liu, P. R. Romeo, D. Van Thourhout, C. Seassal, P. Regreny, L. Di Cioccio, J. M. Fedeli, and R. Baets, IEEE Photon. Technol. Lett. 20, 1345 (2008).
  • 10L. Liu, R. Kumar, K. Huybrechts, T. Spuesens, E.-J. Geluk T. de Vries, P. Regreny, D. Van Thourhout, R. Baets, and G Morthier, Nat. Photon. 4, 182 (2010).

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部