期刊文献+

Quantum Fisher information of triphoton states

Quantum Fisher information of triphoton states
原文传递
导出
摘要 Based on the standard angular momentum theory, we create an experiment on preparing maximally path- entangled ([N, 0] + [0, N〉]2 (NOON) states of triphotons. In order to explain the error between the theoretical and experimental data, we consider the background events during the experiment, and observe their effect on the uncertainty in S1- Afterwards, we calculate the quantum Fisher information (QFI) of the states to evaluate their potential applications in quantum metrology. Our results show that by adding the appropriate background terms, the theoretical data of the produced states matches well with the experimental data. In this case, the QFI of the states is lower than maximally entangled NOON states, but still higher than a classical state. Based on the standard angular momentum theory, we create an experiment on preparing maximally path- entangled ([N, 0] + [0, N〉]2 (NOON) states of triphotons. In order to explain the error between the theoretical and experimental data, we consider the background events during the experiment, and observe their effect on the uncertainty in S1- Afterwards, we calculate the quantum Fisher information (QFI) of the states to evaluate their potential applications in quantum metrology. Our results show that by adding the appropriate background terms, the theoretical data of the produced states matches well with the experimental data. In this case, the QFI of the states is lower than maximally entangled NOON states, but still higher than a classical state.
机构地区 Department of Physics
出处 《Chinese Optics Letters》 SCIE EI CAS CSCD 2016年第3期84-88,共5页 中国光学快报(英文版)
基金 supported by the National Innovation Experiment Program for University Students under Grant No. BJTU 150170042
关键词 Fisher information matrix Quantum entanglement Fisher information matrix Quantum entanglement
  • 相关文献

参考文献33

  • 1Z. Y. Ou, Phys. Rev. A 55, 2598 (1997).
  • 2H. Lee, P. Kok, and J. P. Dowling, J. Mod. Opt. 49, 2325 (2002).
  • 3W. P. Bowen, R. Schnabel, H. A. Bachor, and P. K. Lain, Phys. Rev. Lett. 88, 093601 (2002).
  • 4M. W. Mitchell, J. S. Lundeen, and A. M. Steinberg, Nature 429, 161 (2004).
  • 5X. Zhong, G. Lin, F. Zhou, Y. Niu, and S. Gong, Chin. Opt. Lett. 13, 092701 (2015).
  • 6J. Qiu, G. Xiang, Y. Zhang, S. Han, and Y. Gui, Chin. Opt. Lett. 12, 112701 (2014).
  • 7M. Kitagawa and M. Ueda, Phys. Rev. A 47, 5138 (1993).
  • 8D. J. Wineland, J. J. Bollinger, W. M. Itano, and D. J. Heinzen, Phys. Rev. A 50, 67 (1994).
  • 9D. Leibfried, M. D. Barrett, T. Schaetz, J. Britton, J. Chiaverini, W. M. Itano, J. D. Jost, C. Langer, and D. J. Wineland, Science 304, 1476 (2004).
  • 10A. Sorensen, L.-M. Duan, J. I. Cirac, and P. Zoller, Nature 409, 63 (2001).

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部