摘要
The phenomenon of data explosion represents a severe challenge for the upcoming big data era.However,the current Internet architecture is insufficient for dealing with a huge amount of traffic owing to an increase in redundant content transmission and the end-point-based communication model.Information-centric networking(ICN)is a paradigm for the future Internet that can be utilized to resolve the data explosion problem.In this paper,we focus on content-centric networking(CCN),one of the key candidate ICN architectures.CCN has been studied in various network environments with the aim of relieving network and server burden,especially in name-based forwarding and in-network caching functionalities.This paper studies the effect of several caching strategies in the CCN domain from the perspective of network and server overhead.Thus,we comprehensively analyze the in-network caching performance of CCN under several popular cache replication methods(i.e.,cache placement).We evaluate the performance with respect to wellknown Internet traffic patterns that follow certain probabilistic distributions,such as the Zipf/Mandelbrot–Zipf distributions,and flashcrowds.For the experiments,we developed an OPNET-based CCN simulator with a realistic Internet-like topology.
The phenomenon of data explosion represents a severe challenge for the upcoming big data era.However,the current Internet architecture is insufficient for dealing with a huge amount of traffic owing to an increase in redundant content transmission and the end-point-based communication model.Information-centric networking(ICN)is a paradigm for the future Internet that can be utilized to resolve the data explosion problem.In this paper,we focus on content-centric networking(CCN),one of the key candidate ICN architectures.CCN has been studied in various network environments with the aim of relieving network and server burden,especially in name-based forwarding and in-network caching functionalities.This paper studies the effect of several caching strategies in the CCN domain from the perspective of network and server overhead.Thus,we comprehensively analyze the in-network caching performance of CCN under several popular cache replication methods(i.e.,cache placement).We evaluate the performance with respect to wellknown Internet traffic patterns that follow certain probabilistic distributions,such as the Zipf/Mandelbrot–Zipf distributions,and flashcrowds.For the experiments,we developed an OPNET-based CCN simulator with a realistic Internet-like topology.
基金
supported by Basic Science Research Program through the National Research Foundation of Korea(NRF)funded by the Ministry of Education(2014R1A1A2057796)and(2015R1D1A1A01059049)