期刊文献+

支持用户属性特征联合聚类的协同过滤算法

User attribute-based collaborative filtering recommendation algorithm with co-clustering
下载PDF
导出
摘要 个性推荐技术,可针对海量的数据实现快速准确的推荐。目前,协同过滤算法作为主流推荐技术,却存在着冷启动、数据稀疏和可扩展性等问题。虽然联合聚类协同过滤算法在解决可扩展性与数据稀疏方面有一定的效果,实时性高,但很难获得全局最优结果。因此,文中提出支持用户属性特征联合聚类的协同过滤算法以联合聚类为基础,融合了基于内容的推荐算法的优点,并经进一步改进以完成高准确率的推荐。实验结果表明,该算法实时响应快,一定程度上克服了冷启动和数据稀疏问题,且推荐质量较高。 A user attribute-based collaborative filtering recommendation algorithm with co-clustering personalized recommendation technology,is used to realize fast and accurate recommendation for vast amount of data. As a mainstream technology,the traditional collaborative filtering algorithm exists cold start,data sparseness and scalability issues. Although the co-clustering-based collaborative filtering recommendation algorithm has some effect on solving the scalability and data sparseness,and has higher real-time effect,it is difficult to obtain global optimal results. This paper proposes a collaborative filtering recommendation algorithm,which is based on co-clustering and also combines the advantages of contentbased recommendation algorithm,and makes further improvements in order to complete the recommend with higher accuracy rate. The experimental results show that the algorithm has fast real-time response,and to some extent overcomes the cold start and the data sparseness problem,also makes higher recommendation quality.
作者 孟胜 袁健
出处 《信息技术》 2016年第3期31-35,40,共6页 Information Technology
基金 国家自然科学基金项目(61402288)
关键词 协同过滤 用户属性 联合聚类 推荐精度 collaborative filtering user attributes co-clustering recommendation accuracy
  • 相关文献

参考文献10

  • 1ZHU Xiao-ming,YE Hong-wu,Gong Song-jie,et al.A personalized recommendation system combining case based reasoning and user-based collaborative filtering[C]∥Proceedings of the 21st annual international conference on Chinese control and decision conference,Guilin,China,2009:4062-4064.
  • 2Sanjog Ray,Ambuj Mahanti.Weighted class based hybrid algorithm for top-N recommender systems[C]∥Proceedings of the 26th IASTED International Conference on Artificial Intelligence and Applications.Innsbruck,Austria,2008:245-251.
  • 3Asela Gunawardana,Christopher Meek.A unified approach to building hybrid recommender systems[C]∥Proceedings of the third ACM conference on Recommender systems,New York,2009:117-124.
  • 4Hyung Jun Ahn.A new similarity measure for collaborative filtering to alleviate the new user coldstarting problem,Information Sciences178,2008:37-51.
  • 5Gong Song-jie.The Collaborative Filtering Recommendation Based on Similar-Priority and Fuzzy Clustering[M]∥Proceeding of 2008Workshop on Power Electronics and Intelligent Transportation System(PEITS2008),IEEE Computer Society Press,2008:248-251.
  • 6SARWAR B M,KARYPIS G,KONSTAN J A,et al.Application of dimensionality reduction in recommender system:a case study[C]∥proc of ACM Web K DD Workshop.2000.
  • 7Ma H,King I,Lyu M R.Effective missing data prediction for collaborative filtering[C].Proceedings of the 30th annual international ACM SIGIR conference on Research and development in information retrieval.ACM,2007.3SM6.
  • 8刘旭东,葛俊杰,陈德人.一种基于聚类和协同过滤的组合推荐算法[J].计算机工程与科学,2010,32(12):125-127. 被引量:13
  • 9Gong S.A collaborative filtering recommendation algorithm based on user clustering and item clustering.Journal of Software,2010,5(7):745-752.
  • 10吴湖,王永吉,王哲,王秀利,杜栓柱.两阶段联合聚类协同过滤算法[J].软件学报,2010,21(5):1042-1054. 被引量:83

二级参考文献35

  • 1周军锋,汤显,郭景峰.一种优化的协同过滤推荐算法[J].计算机研究与发展,2004,41(10):1842-1847. 被引量:103
  • 2张海燕,丁峰,姜丽红.基于模糊聚类的协同过滤推荐方法[J].计算机仿真,2005,22(8):144-147. 被引量:25
  • 3张丙奇.基于领域知识的个性化推荐算法研究[J].计算机工程,2005,31(21):7-9. 被引量:34
  • 4Xu HL,Wu X,Li XD,Yan BP.Comparison study of Internet recommendation system.Journal of Software,2009,20(2):350-362 (in Chinese with English abstract).http://www.jos.org.cn/1000-9825/3388.htm[doi:10.3724/SP.J.1001.2009.03388].
  • 5Marlin B.Collaborative Filtering:A machine learning perspective[MS.Thesis].Toronto:University of Toronto,2004.
  • 6Hofmann T.Latent semantic models for collaborative filtering.ACM Trans.on Information System,2004,22(1):89-115.[doi:10.1145/963770.963774].
  • 7Blei DM,Ng AY,Jordan MI.Latent Dirichlet allocation.Journal of Machine Learning Research,2003,3(3):993-1022.[doi:10.1162/ jmlr.2003.3.4-5.993].
  • 8Netflix update:Try this at home.2006.http://sifter.org/~simon/journal/20061211.html.
  • 9Zhang S,Wang WH,Ford J,Makedon F.Learning from incomplete ratings using non-negative matrix factorization.In:Ghosh J,ed.Proc.of the 6th SIAM Conf.on Data Mining.Bethesda:SIAM,2006.549-553.
  • 10Cheng YZ,Church GM.Biclustering of expression data.In:Bourne PE,ed.Proc.of the 8th Int'l Conf.on Intelligent Systems for Molecular Biology.La Jolla:AAAI Press,2000.93-103.[doi:10.1016/j.ipm.2008.12.004].

共引文献93

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部