期刊文献+

基于协方差描述子的彩色图像分割算法 被引量:1

Incorporating covariance descriptor for color image segmentation
下载PDF
导出
摘要 为克服模糊C均值聚类图像分割对噪声较为敏感的缺陷,提出了一种结合协方差描述子的模糊C均值聚类算法。采用协方差描述子的滤波能力以改善传统模糊C均值聚类算法对噪声敏感的缺陷;提取超像素的协方差矩阵作为特征,降低图像识别的特征冗余。并做了仿真实验,对提出的算法与三个图像分割算法进行比较,结果表明该图像分割算法具有较好的噪声鲁棒性和分割准确率。 This paper presents a new method to overcome the drawback of fuzzy c-means cluster in noiserobust. It proposes to apply covariance descriptor to superpixel as a feature. Then it introduce the FCMbased algorithm incorporating covariance descriptor. The experiments reveals that the approach achieves competitive and even better results compared with three FCM-based algorithms.
出处 《信息技术》 2016年第3期97-100,共4页 Information Technology
基金 南京领军型科技创业人才引进计划(2014A090002)
关键词 图像分割 模糊C均值聚类 超像素 协方差描述子 image segmentation fuzzy C-means cluster superpixel covariance descriptor
  • 相关文献

参考文献17

  • 1王春瑶,陈俊周,李炜.超像素分割算法研究综述[J].计算机应用研究,2014,31(1):6-12. 被引量:116
  • 2Osuma-Enciso V,Cuevas E,Sossa H.A comparison of nature inspired algorithms for multi-threshold image segmentation[J].Expert Systems with Applications,2013,40(4):1213-1219.
  • 3Zhiding Yua,Oscar C,Aua,et al.An adaptive unsupervised approach toward pixel clustering and color image segmentation[J].Pattern Recognition,2010,43(5):1889-1906.
  • 4崔文博,蔺想红,徐满意.脉冲神经网络图像分割的编码方法[J].计算机工程,2012,38(24):196-199. 被引量:7
  • 5REN Xiao-feng,MALIK J,Learning.A classification model for segmentation[C].The 9th IEEE International Conference on Computer Vision.Washington DC:IEEE Computer Society,2003:10-17.
  • 6Oncel Tuzel,Fatih Porikli,Peter Meer.Region Covariance:A Fast Descriptor for Detection and Classification[C].ECCV 2006.Part II LNCS Volume 3952,2006:589-600.
  • 7Bezdek J C.Pattern Recognition with Fuzzy Objective Function Algorithms[M].New York,NY,USA:Plenum,1981.
  • 8COMANICIU D,MEER P.Mean shift:a robust approach toward feature space analysis[J].IEEE Trans on Pattern Analysis and Machine Intelligence,2002,24(5):603-619.
  • 9VEDALDI A,SOATTO S.Quick shift and kernel methods for mode seeking[M].Computer Vision.Berlin:Springer-Verlag,2008:705-718.
  • 10ACHANTAR,SHAJI A,SMITH K,et al.SLIC superpixels compared to state-of-the-art superpixel methods[J].IEEE Trans on Pattern Analysis and Machine Intelligence,2012,34(11):2274-2282.

二级参考文献59

  • 1Quiroga R Q, Panzeri S. Extracting Information from Neuronal Populations: Information Theory and Decoding Approaches[J]. Nature Reviews Neuroscience, 2009, 10(3): 173-185.
  • 2Johnson D H. Information Theory and Neural Information Processing[J]. IEEE Transactions on Information Theory, 2010, 56(2): 653-666.
  • 3Cho M W, Choi M Y. Theory of Neural Communication Based on Spatio-temporal Coding[J]. BMC Neuroscience, 2(111, 12(S 1 ): 38.
  • 4Ghosh-Dastidar S, Adeli H. Spiking Neural Networks[J]. International Journal of Neural Systems, 2009, 19(4): 295-308.
  • 5Buhmann J, Lange T, Ramacher U. Image Segmentation by Networks of Spiking Neurons[J]. Neural Computation, 2005, 17(5) 1010-1031.
  • 6Meftah B, Lezoray O, Benyettou A. Segmentation and Edge Detection Based on Spiking Neural Network Model[J]. Neural Processing Letters, 2010, 32(2): 131-146.
  • 7Wu Qingxiang, McGinnity T M, Maguire L, et al. Colour Image Segmentation Based on a Spiking Neural Network Model Inspired by the Visual System[C]//Proc. of the 6th International Conference on Intelligent Computing. Heidelberg, Germany: [s. n.], 2010: 49-57.
  • 8Thorpe S, Fize D, Martot C. Speed of Processing in the Human Visual System[J]i Nature, 1996, 381(6582): 520-522.
  • 9Thorpe S J, Delorme A, Van Rullen R. Spike-based Strategies for Rapid Processing[J]. Neural Networks, 2001, 14(6-7): 715-725.
  • 10Bohte S M, Kok J N, La Poutr6 J A. Error-backpropagation in Temporally Encoded Networks of Spiking Neurons[J]. Neurocomputing, 2002, 48( 1-4): 17-37.

共引文献278

同被引文献1

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部