摘要
实现对粮情安全的预测、提高粮情检测的实时性,是降低粮食发霉变质等事故发生的重要保障.设计了一种基于Apriori数据挖掘算法的粮情安全预测系统,通过分析挖掘监控中心采集到的大量粮仓环境历史数据实现了精准预测,及早发现了粮仓的安全隐患,有效地防止了粮情检测不及时的问题.
The achievement of food security situation and the prediction of grain situation to improve real-time detection are important safeguard to reduce moldy food and other accidents. To solve this problem,we proposed and designed a data mining system based on Apriori algorithm to predict food security situation,and analyzed a lot of historical data collected from the monitoring center of barn environment,then achieved food security situation for accurate prediction. The system can detect security risks of the grain in the barn,thus effectively avoid the problem of food situation cannot be detected timely.
出处
《河南工程学院学报(自然科学版)》
2016年第1期74-77,共4页
Journal of Henan University of Engineering:Natural Science Edition
基金
河南省科技攻关计划项目(122102310441)
关键词
APRIORI算法
数据挖掘
粮情安全
粮情预测
Apriori algorithm
data mining
food security situation
grain situation prediction