期刊文献+

两量子比特耦合到共同环境系统中纠缠演化特性的研究

Study of entanglement dynamics of two qubits coupled to a common environment system
下载PDF
导出
摘要 通过计算线性熵研究了两量子比特耦合到共同环境系统中纠缠演化特性,讨论了量子比特与环境的相对耦合强度以及两量子比特初始纠缠度对纠缠的影响。结果表明量子比特处于好腔时,线性熵随时间演化呈振荡行为,量子比特和环境的相对耦合强度越大,线性熵稳态值越大;量子比特处于坏腔时,两量子比特与环境之间纠缠产生的阈值时间与两量子比特初始纠缠度无关。 The entanglement dynamics of two qubits coupled to a common environment system is investigated by computing the linear entropy. The effect of the relative coupling strength of the qubit with environment and the initial entanglement degree of two qubits are discussed. The results show that the linear entropy shows oscillatory behaviour as time evolves when the qubits are in the good-cavity. The steady value of the linear entropy becomes larger as the relative coupling strength of the qubit with environment increases. When the qubits are in bad-cavity,the threshold time for the creation of the entanglement between two qubits and environment is independent of the initial entanglement degree of two qubits.
出处 《南昌工程学院学报》 CAS 2016年第1期30-33,共4页 Journal of Nanchang Institute of Technology
基金 国家自然科学基金资助项目(11247213 61368002) 中国博士后科学基金资助项目(2013M531558) 江西省博士后科研择优资助项目(2013KY33) 江西省自然科学基金资助项目(20142BAB217001) 江西省教育厅科技项目(GJJ13051 GJJ13057)
关键词 量子信息 线性熵 纠缠 纠缠突然死亡 quantum information linear entropy entanglement entanglement sudden death
  • 相关文献

参考文献12

  • 1Nielsen M A,Chuang I L.Quantum Computation and Information[M].Cambridge University Press,2000.
  • 2Bennett C H,Brassard G,Crepeau C,et al.Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels[J].Physical Review Letters,1993,70(13):1895-1899.
  • 3Bennett C H,Wiesner S J.Communication via one-and two-particle operators on Einstein-Podolsky-Rosen states[J].Physical Review Letters,1992,69(20):2881-2884.
  • 4Ekert A K.Quantum cryptography based on Bell’s theorem[J].Physical Review Letters,1991,67(6):661-663.
  • 5Yu T,Eberly J H.Finite-time disentanglement via spontaneous emission[J].Phys.Rev.Lett,2004,93(14):14040.
  • 6Ynac M,Yu T,Eberly J H.Sudden death of entanglement of two Jaynes-Cummings atom[J].J.Phys.B:At.Mol.Opt.Phys,2006,39(15):S621-S625.
  • 7Li Z J,Li J Q,Jin Y H,et al.Time evolution and transfer of entanglement between an isolated atom and a Jaynes-Cummings atom[J].J.Phys.B:At.Mol.Opt.Phys,2007,40(17):3401-3411.
  • 8Ficek Z,Tanas R,Kielich S.Squeezed states in N-atom time-dependent resonance fluorescence[J].J.Phys,1987,48(10):1697-1702.
  • 9丛红璐,任学藻,廖旭.非旋波近似下双光子Jaynes—Cummings模型的量子特性[J].光学学报,2015,35(7):325-331. 被引量:14
  • 10Francica F,Maniscalco S,Piilo J,et al.Off-resonant entanglement generation in a lossy cavity[J].Physical Review A,2008,79(3):1039-1044.

二级参考文献12

共引文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部