期刊文献+

基于正定优化的分布式阵列舰载米波雷达的高分辨角度估计 被引量:1

High resolution DOA estimation based on SDP for distributed subarray antenna shipborne VHF radar
下载PDF
导出
摘要 针对米波雷达波长较长及在舰载平台上安装大孔径均匀阵列天线工程上难以实现且不利于自身的隐身的问题,提出了分布式阵列天线结构和基于正定优化的分布式阵列天线米波雷达高分辨角度估计算法。该算法从分布式阵列天线的空域相关阵出发,利用矩阵完型理论,由矩阵直接增广法得到同孔径均匀阵列的增广相关阵,再利用正定优化算法将增广相关阵修正为正定厄密的Toeplitz相关阵,实现了分布式阵列的流形解模糊及信号相参处理,从而达到了分布式阵列的孔径扩展。仿真结果验证了分布式阵列及基于SDP的修正算法的正确性与有效性,也验证了经过SDP修正后分布式阵列的高分辨性能。 Due to the longer wavelength of VHF radar and limited surface available on many shipborne platforms,the large uniform antenna array is practically prohibited and is not conducive to own stealthy performance,a novel distributed subarray antenna( DSA) is proposed. For distributed subarray antenna VHF radar,an high resolution direction of arrival estimation algorithm based on Semidefinite Programming( SDP) is also proposed. The algorithm from spatial autocorrelation matrix of the DSA is rooted matrix completion,which firstly attains an augmented matrix of the same aperture uniform array antenna as DSA through direct augmented approach( DDA). Then the augmented matrix is revised to a positive definite Hermitian Toeplitz autocorrelation matrix. So the ambiguity of the DSA manifold is resolved,and coherent signal processing and aperture extension of DSA are accomplished. Simulation results demonstrate the validity and effectiveness of the revised algorithm based on SDP,also demonstrate the high resolution performance of DSA.
出处 《南昌工程学院学报》 CAS 2016年第1期46-51,共6页 Journal of Nanchang Institute of Technology
基金 国家自然科学青年基金资助项目(61401187) 南昌工程学院青年基金项目(2014KJ017)
关键词 舰载米波雷达 分布式阵列 半正定优化 交替凸投影法 shipborne VHF radar distributed subarray antenna semidefinite programming alternating convex projection method
  • 相关文献

参考文献16

  • 1Kuschel H.VHF/UHF radar part 2:Operational aspects and application[J].Electronics and Communication Engineering Journal,2002,14(3):101-111.
  • 2Lin C H.Distributed subarray antennas for multifunction phased-array radar[D].Naval Postgraduate School,California,USA,2007.
  • 3Yin P L.Wideband distributed coherent aperture radar[C].2014 IEEE Radar Conference,Cincinnati,Ohio,2014:1114-1117.
  • 4Qiao H,Pal P.Generalized nested sampling for compressing low rank Toeplitz matrices[J].IEEE Signal Processing Letters.2015,22(11):1844-1848.
  • 5Harry L.Van Trees.Detection,Estimation,and Modulation Theory,Part IV,Optimum array processing[M].New York:Wiley,2002.
  • 6陈根华,陈伯孝.基于矩阵完型的干涉式阵列米波雷达解模糊算法[J].电子与信息学报,2013,35(2):394-400. 被引量:2
  • 7Abramovich Y I,Spencer N K,Gorokhov AY.Resolving Manifold Ambiguities in direction of arrival estimation for Nonuniform linear array[J].IEEE Trans.On Signal Processing,1999,47(10):2629-2643.
  • 8Pillai S,Haber F.A New approach to array geometry for improved spatial spectrum estimation[J].Proc.of IEE,1985,73(10):1522-1524.
  • 9Stephen B,Vandenberghe L.Convex Optimization[M].New York:Cambridge University Press,2004.
  • 10Leslie H.Handbook of linear algebra[M].Boca Raton:CRC Press,2007.

二级参考文献18

  • 1Abramovich Y I,Spencer N K,Gorokhov A Y. Detection-estimation of more uncorrelated Gaussian sources than sensors in nonuniform linear antenna arrays--Part Ⅰ:fully augmentable arrays[J].IEEE Transactions on Signal Processing,2001,(05):959971.
  • 2Athley F. Threshold region performance of maximum likelihood direction of arrival estimators[J].IEEE Transactions on Signal Processing,2005,(04):1359-1373.doi:10.1109/TSP.2005.843717.
  • 3Brockett T J,Samii Y R. Subarray design diagnostics for the suppression of undesirable grating lobes[J].IEEE Transactions on Antennas and Propagation,2012,(03):1373-1380.
  • 4McAulay R J. Interferometer design for elevation angle estimation[J].IEEE Transactions on Aerospace and Electronic Systems,1977,(05):486-503.
  • 5Chen W,Xu X,Wen S. Super-resolution direction finding with far-separated subarrays using virtual array elements[J].IET Radar Sonar & Navigation,2011,(08):824-834.
  • 6Abramovich Y I,Johnson B A. Expected likelihood support for deterministic maximum likelihood DOA estimation[A].Israel,2010.237-240.
  • 7Abramovich Y I,Spencer N K,Gorokhov A Y. Positive-definite Toeplitz completion in DOA estimation for nonuniform linear antenna arrays--Part Ⅱ:partially augmentable arrays[J].IEEE Transactions on Signal Processing,1999,(06):1502-1521.doi:10.1109/78.765119.
  • 8Rubsamen M,Gershaman A B. Sparse array design for azimuth direction-of-arrival estimation[J].IEEE Transactions on Signal Processing,2011,(12):5957-5969.
  • 9Chen G H,Chen B X. Eigenstructure-based ambiguity resolution algorithm for distributed subarray antennas VHF radar[J].Electronics Letters,2012,(13):788-789.
  • 10Schmidt R O. A signal subspace approach to multiple emitter location and spectral estimation[D].Stanford,California,Stanford University,1981.

共引文献1

同被引文献8

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部