摘要
随着社交网络的兴起,大规模图数据处理技术成为研究的热点,从海量的社交数据中分析数据的关系具有巨大的商业价值。Spark利用其内存计算模型和适合迭代运算的优势,为大规模图数据并行运算提供Graphx框架。以经典的Page Rank算法为例,分析Graphx框架下的Pregel迭代计算模型,总结Pregel计算模型的优势和应用场景。
With the development of social network, large-scale graph processing technology become a hot spot of research. Analyzing relationship from massive social data has great commercial value. Taking the advantages of memory-computing model and iterative computation, Spark provides Graphx for large-scale graph parallel computing framework. Analyzes the Pregel iterative computing model under Graphx in the example of classical Page Rank algorithm, summarizes the advantages and application of Pregel computing model.
出处
《现代计算机》
2016年第5期44-46,64,共4页
Modern Computer