期刊文献+

广义极大似然估计在OCT无创血糖监测中的应用 被引量:9

Application of Maximum Likelihood Type Estimates in Noninvasive Blood Glucose Monitoring in vivo Using Optical Coherence Tomography
原文传递
导出
摘要 在光学相干层析术(OCT)无创血糖监测过程中,预测模型的建立容易受异常点的干扰。采用广义极大似然估计(M估计)建立的预测模型能够有效地通过权函数降低异常点在模型中的权重。通过人体血糖钳夹临床实验和口服葡萄糖耐量测试实验,利用M估计和最小二乘估计法(OLS估计)两种方法建立了血糖预测模型,采用交互验证法对两种模型的均方根误差(RMSE)进行了比较。对比结果表明,M估计能有效地降低血糖预测模型的RMSE值。此外,利用克拉克误差表格分析法对两个模型的预测结果进行评估,评估结果表明采用M估计建立的血糖预测模型的准确性和稳定性高于OLS估计,因此M估计更适合临床上的OCT无创血糖监测应用。 During the model building process, the blood glucose monitoring model can be easily damaged by abnormal points. Maximum likelihood type estimates (M estimates) introduced in this paper can decrease the weight of abnormal points in the blood glucose model. In glucose clamp experiment and human oral glucose tolerance test, M estimates and ordinary least sum of squares estimates (OLS estimates) are applied to build the blood glucose monitoring models, respectively. Root mean square error (RMSE) of the model built by M estimates is calculated by using interactive verification method. It shows that M estimates can effectively reduce the RMSE value of blood glucose prediction results. In addition, predicted values of blood glucose by the two models are evaluated by Clarke error grid analysis. The results show that the veracity and stability of the blood prediction model built by M estimates are higher than that built by OLS estimates. Thus, the method of M estimates is more suitable for clinical application of noninvasive blood glucose sensing using optical coherence tomography.
出处 《激光与光电子学进展》 CSCD 北大核心 2016年第3期191-196,共6页 Laser & Optoelectronics Progress
基金 国际科技合作专项(2010DFB13180) 江苏省基础研究计划(BK20130374) 苏州市医疗器械与新医药科技计划(ZXY2012026)
关键词 医用光学 扫频光学相干层析 广义极大似然估计 血糖预测模型 克拉克误差表格分析 medical optics sweep frequency optical coherence tomography maximum likelihood type estimates blood glucose monitoring model Clarke error grid analysis
  • 相关文献

参考文献8

二级参考文献125

  • 1孙兵,顾成权,方云,王金华,乌布力.买买提.艾里,王琦,彭啸江.应用超声波检测地杖层空腔区域[J].工程地球物理学报,2004,1(6):489-493. 被引量:2
  • 2Heise H M, Marbach R, Koschinsky T H, et al. J. Artif. Org. , 1994, 18: 439.
  • 3Kim Y J, Hahn S, Yoon G. Appl. Opt. , 2003, 42(4): 745.
  • 4Cote G L, Cameron B D. J. Biomedical Optics, 1997, 2(3) : 275.
  • 5Berger A J, Koo T W, Itzkan I, et al. Appl. Opt. , 1999, 38 (13) :2916.
  • 6LUWan-zhen(陆婉珍主编).Modern Near Infrared Spectroscopy Analytical Technology(Second Edition)(现代近红外光谱分析技术,第2版).Beijing:China Petrochemical Press(北京:中国石化出版社),2007.1.
  • 7Wold S, Sjostrom M, Eriksson L. Chemometr. Intell. Lab. Syst. , 2001, 58: 109.
  • 8Serneels S, Croux C, Filzmoser P, et al. Chemometr. Intell. Lab. Syst. , 2005, 79: 55.
  • 9Cummins D J, Andrews C. J. Chemom, 1995, 9:489.
  • 10Hubert M, Vanden K Branden. J. Chemom, 2003, 17: 537.

共引文献75

同被引文献114

引证文献9

二级引证文献39

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部