期刊文献+

基于一致系数求积的广义牛顿法求解非线性方程组 被引量:2

Uniform-coefficient Quadrature-based Iterative Methods for Solving Nonlinear Equations
下载PDF
导出
摘要 采用一致系数求积公式近似逼近泰勒余项,得到一种新的求解非线性方程组的广义牛顿法.给出算法的一般形式,证明算法是三阶收敛的,并且在一定的温和条件下可以达到五阶收敛.最后,给出数值例子说明算法的有效性和稳定性. In this paper,we present a new variant of Newton's method for solving nonlinear equations based on uniform-coefficient quadrature formulas.The cubic convergence of the proposed algorithm is established.Moreover,the fifth-order convergence is proved under some mild conditions.Some numerical experiments are reported to illustrate the effectiveness and the flexibility of our algorithm.
作者 姚腾腾
出处 《厦门大学学报(自然科学版)》 CAS CSCD 北大核心 2016年第2期221-226,共6页 Journal of Xiamen University:Natural Science
关键词 一致系数求积 广义牛顿法 非线性方程组 三阶收敛 uniform coefficient quadrature newton-type method nonlinear equations cubic convergence
  • 相关文献

参考文献11

  • 1BABAJEE D K R,DAUHOO M Z,DARVISHI M T.et al.A note on the local convergence of iterative methods based on Adomian decomposition method and 3-node quadrature rule[J].Appl Math Comput,2008,200:452-458.
  • 2CORDERO A,TORREGROSA J R.Variants of Newton’s method for functions of several variables[J].Appl Math Comput,2006,183:199-208.
  • 3CORDERO A,TORREGROSA J R.Variants of Newton’s method using fifth-order quadrature formulas[J].Appl Math Comput,2007,190:686-698.
  • 4DARVISHI M T,BARATI A.A third-order Newton-type method to solve systems of nonlinear equations[J].Appl Math Comput,2007,187:630-635.
  • 5GOLBABAI A,JAVIDI M.A new family of iterative methods for solving system of nonlinear algebric equations[J].Appl Math Comput,2007,190:1717-1722.
  • 6NOOR M A.Some applications of Newton-Cotes formula for solving nonlinear equations[J].Int J Appl Math Eng Sci,2010,4:43-52.
  • 7NOOR M A,WASEEM M.Variant of Newton method using fifth-order quadrature formula:revisited[J].J Appl Math & Inform,2009,27:1195-1209.
  • 8SáNCHEZ M G,PERIS J M,GUTIéRREZ J M.Accelerated iterative methods for finding solutions of a system of nonlinear equations[J].Appl Math Comput,2007,190:1815-1823.
  • 9蒋尔雄,赵风光,苏仰锋.数值逼近[M].2版.上海:复旦大学出版社,2008.
  • 10ORTEGA J M,RHEINBOLDT W C.Iterative solution of nonlinear equations in several variables[M].New York:Academic Press,1970:181-239.

共引文献2

同被引文献23

引证文献2

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部