期刊文献+

基于SVR选择性集成的机场噪声预测模型研究 被引量:2

Airport Noise Prediction Model Research Based on SVR Selective Ensemble
下载PDF
导出
摘要 机场噪声预测对机场规划设计、航班计划制定以及机场噪声控制具有十分重要的作用。针对机场周围各个监测点上的单飞行事件进行噪声预测。由于机场噪声数据的复杂性,用单一的SVR方法对其预测往往得出局部优化结果,不能达到理想的预测效果,针对这一问题,提出一种基于SVR选择性集成的机场噪声预测方法,通过Adaboost方法对机场噪声数据进行采样训练得到多个SVR预测模型,并结合一种排序方法对预测模型进行选择集成得到最终机场噪声预测值,取得了较好的预测效果。 Airport noise prediction plays an important role in airport planning,flight plan schedule and noise control. According to different monitoring points around airport,this paper aim to predict corresponding noise of individual flight event. For the complexity of airport noise data,prediction method which only applied single SVR would cause the problem of local optimum,and cannot get an accurate prediction result as expected. To solve this problem,an airport noise prediction method based on SVR selective ensemble was proposed in this paper. Adaboost method was used to airport noise data sampling,and then multiple SVR forecasting models were trained. With the help of a sorting method,forecasting models selective ensemble was achieved and used to predict the final airport noise value,proved has a good prediction effect.
出处 《航空计算技术》 2016年第1期16-18,22,共4页 Aeronautical Computing Technique
基金 国家自然科学基金项目资助(61501229)
关键词 机场噪声预测 SVR 选择性集成 ADABOOST 排序方法 airport noise prediction SVR selective ensemble adaboost sorting method
  • 相关文献

参考文献9

  • 1Freund Y, Schapire R E. A Decision- theoretic Generalization of Online Learning and an Application to Boosting[ J ]. Jour- nal of Computer and System Scienses, 1997,55 ( 1 ) : 119 - 139.
  • 2Zhou Z H, Wu J X,Tang W. Ensembling Neural Networks: Many Could be Better Than All[ J ]. Artilficial Intelligence, 2002,137( 1 -2) :239 -236.
  • 3Giacinto G, Roli F. An Approach to the Automatic Design of Multiple Classifier Systems [ J ]. Pattern Recognition Letters, 2001,22( 1 ) :25 -33.
  • 4Martfnez- Mufiz G, Sutrez A. Pruning in Ordered Bagging Ensembles[ C]//Procedings of the 23rd International Confer- ence in Machine Learning, Pittsburgh, Pennsylvania: The As- sociation for Computing Machinery,2006.
  • 5Meynet J, Thiran J P. Information Theoretic Combination of Pattern Classifiers [ J ]. Pattern Recognition Letters, 2010,43 (10) :3412 - 3421.
  • 6Zhang Li, Zhou Wei Da. Sparse Ensembles using Weighted Combination Methods Based on Linear Programming [ J ]. Pattern Reeognition,2011,44( 1 ) :97 - 106.
  • 7张春霞,张讲社.选择性集成学习算法综述[J].计算机学报,2011,34(8):1399-1410. 被引量:139
  • 8赵强利,蒋艳凰,徐明.选择性集成算法分类与比较[J].计算机工程与科学,2012,34(2):134-138. 被引量:9
  • 9GB9660-88.机场周围飞机噪声环境标准[S].[S].中国科学院声学研究所 北京:国家环境保护局,1988..

二级参考文献87

  • 1王丽丽,苏德富.基于群体智能的选择性决策树分类器集成[J].计算机技术与发展,2006,16(12):55-57. 被引量:3
  • 2Thompson S. Pruning boosted classifiers with a real valued genetic algorithm. Knowledge-Based Systems, 1999, 12(5-6): 277-284.
  • 3Zhou Z H, Tang W. Selective ensemble of decision trees// Proceedings of the 9th International Conference on Rough Sets, Fuzzy Sets, Data Mining, and Granular Computing. Chongqing, China, 2003:476-483.
  • 4Hernandez-Lobato D, Hernandez-Lobato J M, Ruiz-Torrubiano R, Valle A. Pruning adaptive boosting ensembles by means of a genetic algorithm//Corchado et al. International Conference on Intelligent Data Engineering and Automated Learning. Berlin Heidelberg: Springer-Verlag, 2006: 322- 329.
  • 5Zhang Y, Burer S, Street W N. Ensemble pruning via semidefinite programming. Journal of Machine Learning Research, 2006, 7: 1315-1338.
  • 6Chen H H, Tino P, Yao X. Predictive ensemble pruning by expectation propagation. IEEE Transactions on Knowledge and Data Engineering, 2009, 21(7): 999-1013.
  • 7Dos Santos E M, Sahourin R, Maupin P. Overfitting cautious selection of classifier ensembles with genetic algorithms. Information Fusion, 2009, 10(2): 150-162.
  • 8Li N, Zhou Z H. Selective ensemble under regularization framework//Benediksson J A, Kittler J, Roll F. Multiple Classifier Systems. Berlin Heidelberg: Springer-Verlag, 2009:293-303.
  • 9Reid S, Grudic G. Regularized linear models in stacked generalization//Benediksson J A, Kittler J, Roli F. Multiple Classifier Systems. Berlin Heidelberg: Springer-Verlag, 2009:112-121.
  • 10Zhang L, Zhou W D. Sparse ensembles using weighted combination methods based on linear programming. Pattern Recognition, 2011, 44(1): 97-106.

共引文献152

同被引文献31

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部