期刊文献+

解析几何教学中融入数学建模思想的探索 被引量:4

Exploration on the Integration of Mathematical Modeling Thought into Analytic Geometry Teaching
下载PDF
导出
摘要 文章通过一系列的教学实践研究指出一些当下解析几何课程中存在的一些问题,同时阐述了在解析几何中融入数学建模思想的可行性和必要性,进一步探索在解析几何教学和教材等方面融入建模思想的方法,同时说明了将建模思想融入到解析几何课程中是目前教学过程中的有效方法之一。 Through a series of teaching practice and research, this paper points out some problems existing in the current analytic geometry course. At the same time, this paper expounds the feasibility and necessity of integrating mathematical modeling thought into analytic geometry, further explores the methods of the integration in analytic geometry teaching and teaching materials, and also illustrates that the integration is an effective method for the current teaching.
作者 李娜
出处 《科教文汇》 2016年第9期89-91,共3页 Journal of Science and Education
关键词 解析几何 建模思想 案例 analytic geometry mathematical modeling thought cases
  • 相关文献

参考文献4

二级参考文献16

  • 1韦程东.指导学生参加全国大学生数学建模竞赛的探索与实践[J].高教论坛,2007(1):27-29. 被引量:12
  • 2姜启源.数学模型[M].北京:高等教育出版社,1992..
  • 3Carletti M, Burrage K, Burrage P M. Numerical simulation of stochastic ordinary differential equations in biomathematical modelling[J]. Mathematics and Computers in Simulation,2004,64(2):271-277.
  • 4Anna Marciniak-Czochra, Marek, Kimmel. Reaction-diffusion approach to modelling of the spread of early tumors along linear or tubular structures [J]. Journal of Theoretical Biology, 2007,244(3)..375-387.
  • 5Gozde Unal, Anthony Yezzi, Hamid Krim. Information-Theortie active polygons for unsupervised texture segmentation[J]. Intermational Journal of Computer Vision, 2005,62(3) : 199-219.
  • 6Chein-Shan Liu, Hong-Ki Hong. Non-oscillation criteria for hypoelastic models under simple shear deformation[J]. Journal of Elasticity,2000,57(3) :200-235.
  • 7JI C庞特里亚金.常微分方程[M].北京:高等教育出版社,2006,1.
  • 8C Henry Edwards,David E Penney.常微分方程基础(英文版·原书第5版)[M].北京:机械工业出版社,2006.250-532.
  • 9Van Iwaarden J L. The computer as a teaching tool in ordinary differential equations [J]. Computer & Mathematics with Applications, 1987,14 (1) : 25-32.
  • 10姜启源,谢金星,叶俊.数学模型[M].北京:高等教育出版社,2004.

共引文献46

同被引文献7

引证文献4

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部