期刊文献+

融入距离信息的最小二乘回归子空间分割 被引量:4

Subspace segmentation via least squares regression including information about distance
下载PDF
导出
摘要 有效分类基因表达数据有助于癌症的诊断,而基因表达数据的高维数、小样本特点使基因表达数据分类困难。针对这个问题,在最小二乘回归子空间分割算法中考虑距离信息,提出融入距离信息的最小二乘回归子空间分割算法。融入距离信息的最小二乘回归子空间分割模型除了考虑数据之间的相关性,还考虑了数据之间的距离信息。在基因表达数据集上的实验结果表明,所提出的算法是有效的聚类方法。 Dividing the gene expression data properly is good for diagnosing cancers. However,the dimension of the data is high and the sample size is small,which increases the difficulty of the classification of gene expression data. In order to solve the problem,the paper proposes subspace segmentation via least squares regression including information about distance,which is based on subspace segmentation via least squares regression. The proposed method considers not only the correlation among data,but also the information about distance. Experimental results on genetic expression data show that the proposed method is effective.
出处 《微型机与应用》 2016年第6期63-65,68,共4页 Microcomputer & Its Applications
关键词 基因表达数据 聚类 距离 子空间分割 gene expression data clustering distance subspace segmentation
  • 相关文献

参考文献2

二级参考文献28

  • 1李颖新,李建更,阮晓钢.肿瘤基因表达谱分类特征基因选取问题及分析方法研究[J].计算机学报,2006,29(2):324-330. 被引量:45
  • 2阮晓钢,晁浩.肿瘤识别过程中特征基因的选取[J].控制工程,2007,14(4):373-375. 被引量:15
  • 3Weight B, Baehner F L, Reis J S. The contribution of gene expression profiling to breast cancer classification, prognostication and prediction: a retrospective of the last decade [ J ]. The Journal of Pathology, 2010, 220 (2) :263- 280.
  • 4Singh D, Febbo P G, Ross K, et al. Gene expression correlates of clinical prostate cancer behavior [ J ]. Cancer Cell, 2002,1 ( 2 ) : 203-209.
  • 5Brazma A, Vilo J. Gene expression data analysis [ J ]. FEBS Letters,2000,480( 1 ) :17-24.
  • 6Sugiyama A, Kotani M. Analysis of gene expression data by using self-organizing maps and k-means clustering[ J]. Neural Network, 2002 ( 5 ) : 1342-1345.
  • 7Yang Y G, Chen J X, Kim W S. Gene expression clustering and 3D visualization[ J]. Computing in Science and Engineering ,2008,5 (5) :37-43.
  • 8Patterson A D, Li H, Eichler G S, et al. UPLC-ESI-TOFMS-based metabolomics and gene expression dynamics inspector self-organizing metabolomic maps as tools for understanding the cellular response to ionizing radiation[ J ]. American Chemical Society,2008, 80(3) :665-674.
  • 9Xu Y, Olman V, Xu D. Clustering gene expression data using a graph-theoretic approach: an application of minimum spanning trees [ J ]. Bioinformatics, 2002,18 ( 4 ) :536-545.
  • 10Laszlo M, Mukherjee S. Minimum spanning tree partitioning algorithm for microaggregation [ J]. IEEE Transactions on Knowledge and Data Engineering,2005,17 ( 7 ) : 902-911.

共引文献4

同被引文献8

引证文献4

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部