摘要
本文讨论了S(H)上保*-同构的线性映射.主要结论为:令H是复的有限维希尔伯特空间.我们记B(H)为H上的所有有界线性算子构成的Banach代数、S(H)为H上的所有自伴算子构成的实线性子空间,则有:为S(H)到S(H)的双边保*-同构的有界线性满射当且仅当存在B(H)上的可逆元A使得对所有T∈S(H)有(T)=ATA*.
In this paper,linear maps preserving *-congruence are discussed. The results we obtained are as follows: Let H be a complex infinite dimensional Hilbert space. By B( H),S( H) we denote the Banach algebra of all bounded linear operators on H and the real linear subspace of all self-adjoint operators on H. It is proved that a bounded linear surjection Φ: S( H)→S( H) preserving *-congruence in both directions if and only if there exists invertible element A ∈ B( H) such that Φ( T) = AT A*for all T ∈ S( H).
出处
《山西师范大学学报(自然科学版)》
2016年第1期33-37,共5页
Journal of Shanxi Normal University(Natural Science Edition)
关键词
*-同构
保持
线性映射
*-congruence
preserver
linear maps