摘要
Magnetohydrodynamic (MHD) bioconvection of an incompressible electrically conducting nanofluid near a vertical wavy surface saturated porous medium containing both nanoparticle and gyrotactic microorganisms is investigated. The nanofluid is represented by a model that includes both Brownian motion and thermophoresis effects. A suitable set of non-dimensional variables are used to transform the governing boundary layer equations into a dimensionless form. The resulting nonlinear system is mapped to the vertical flat plate domain, and a non-similar solution is used to the obtained equations. The obtained non-similar system is then solved numerically using the fourth-order Runge-Kutta method. The influence of various physical parameters on the local Nusselt number, the local Sherwood number, the local density number of the motile microorganisms, the dimensionless velocity, the dimensionless temperature, and the rescaled density of motile microorganisms is studied. It is found that the local Nusselt number, the local Sherwood number, and the local density number of the motile microorganisms decrease by increasing either the Grashof number or the magnetic field parameter.
Magnetohydrodynamic (MHD) bioconvection of an incompressible electrically conducting nanofluid near a vertical wavy surface saturated porous medium containing both nanoparticle and gyrotactic microorganisms is investigated. The nanofluid is represented by a model that includes both Brownian motion and thermophoresis effects. A suitable set of non-dimensional variables are used to transform the governing boundary layer equations into a dimensionless form. The resulting nonlinear system is mapped to the vertical flat plate domain, and a non-similar solution is used to the obtained equations. The obtained non-similar system is then solved numerically using the fourth-order Runge-Kutta method. The influence of various physical parameters on the local Nusselt number, the local Sherwood number, the local density number of the motile microorganisms, the dimensionless velocity, the dimensionless temperature, and the rescaled density of motile microorganisms is studied. It is found that the local Nusselt number, the local Sherwood number, and the local density number of the motile microorganisms decrease by increasing either the Grashof number or the magnetic field parameter.