期刊文献+

基于多特征融合的雷达辐射源信号识别 被引量:8

Radar Emitter Signal Recognition Based on Fusion of Features
下载PDF
导出
摘要 针对在低信噪比条件下雷达辐射源信号识别率低的问题,为了提高雷达信号识别率,提出了一种采用多特征融合的脉内调制方式识别方法。首先对信号进行Choi-Williams变换,得到时频图后实施降噪处理;然后利用奇异值分解(SVD)和线性鉴别分析(LDA)两种方法提取其时频图特征值,并进行特征融合,最后选择用最小距离准则进行分类判别。仿真选用6种常见的雷达辐射源信号,仿真结果表明在0dB的低信噪比条件下,上述方法的平均识别率在90%以上。最后将特征融合前后的识别效果进行对比,仿真结果验证了融合算法的优越性,证明可为雷达信号优化识别提供依据。 To solve the problem of low rate in radar emitter signal recognition under low SNR, a new approach u- sing fusion of features for recognition of intra-pulse modulation is proposed. At first, the time-frequency images of radar emitter signals are obtained by Choi-Williams transform, and then the noise reduction of these images is pro- cessed. After that, the methods of SVD and LDA are used to extract the features of time-frequency images and the features fusion is implemented afterwards. At last, the minimum distance principle is used for classification and dis- crimination. Six kinds of common radar signals are used in simulations. The results show that the average recognition rate can reach 90% or more when the SNR is as low as 0dB. The recognition effect after fusion is also compared with that without using it. The superiority of the fusion algorithm is proved by simulation results.
出处 《计算机仿真》 CSCD 北大核心 2016年第3期18-22,共5页 Computer Simulation
基金 国家自然科学基金资助项目(61372166) 陕西省自然科学基础研究计划资助项目(2014JM8308)
关键词 雷达辐射源信号识别 奇异值分解 线性鉴别分析 特征融合 Radar emitter signal recognition SVD LDA features fusion
  • 相关文献

参考文献4

二级参考文献43

  • 1魏东升,徐东晖.雷达信号脉内细微特征的时频分析[J].电子对抗,1993(4):7-19. 被引量:4
  • 2刘毅,张彩明,冯峰,李圣君.基于高阶累积量的参数化双谱分析的肺音特征提取[J].山东大学学报(工学版),2005,35(2):77-85. 被引量:9
  • 3曲长文,乔治国.雷达信号脉内特征的小波分析[J].上海航天,1996,13(5):15-19. 被引量:9
  • 4蔡忠伟,李建东.基于双谱的通信辐射源个体识别[J].通信学报,2007,28(2):75-79. 被引量:84
  • 5S S Soliman, S Z Hsue. Signal classfication using statistical memonts [J]. IEEE Trans. Com., 1992, 40(5): 908-916.
  • 6E E Azzous, A K Nandi. Automatic identification of digital modulation type [J]. IEEE signal processing, 1995, 47(1): 55-69.
  • 7M L Wong, A K Nandi. Automatic digital modulation recognition using spectral and statistical features with multi-layer perceptrons [A]. Six International symposiums on signal processing and its application [C]. 2001, 2(2): 390-393.
  • 8L Mingquan, X XianCi, L Lemin. Cyclic spectral features based modulation recognition [A]. Proceedings of International Conference on communications Technology [C]. 1996, 2(2): 792-795.
  • 9A K Nandi, E E Azzouz. Algorithms for automatic modulation recognition of communication signals [A]. IEEE Trans .on Comm. [C]. 1998, 46(4): 431-436.
  • 10M P Desimio, E P Glenn. Adaptive generation of decision functions for classification of digitally modulated signals [A]. National Aerospace Electronics Conference [C]. 1988. 1010-1014.

共引文献16

同被引文献71

引证文献8

二级引证文献25

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部