期刊文献+

阀控不对称缸电液伺服系统的PI观测器设计

Design of PI observer for Electro-Hydraulic Valve-Controlled Single Rod Cylinder Servo System
下载PDF
导出
摘要 为了更为有效的诊断电液伺服系统的故障,针对复杂的非线性的与多参数的阀控不对称缸电液伺服系统,提出了具有较大自由度的PI观测器的设计方法。首先建立了阀控不对称缸电液伺服系统系统的线性化模型,运用线性矩阵不等式设计了PI观测器来估计系统输出,然后将估计结果和未知输入同时加入到控制率中,不仅使系统能够跟踪给定的参考模型,而且也能得到外界故障估计。最后通过MATLAB仿真将实际输出值与估计值进行比较,证明了所设计的PI观测器和控制方法的对故障诊断的有效性。 In order to effectively detect faults of electro-hydraulic valve-controlled single rod cylinder servo sys- tem with complex, nonlinear and multi-parameter, a design method for PI observer with high freedom is proposed. Firstly, a linear system model is built. The PI observer is designed to estimate the system output via linear matrix ine- quality. The estimation results and unknown input are joined in the control. The system can track the reference mod- el. And the displacement estimation is obtained. Finally the example simulation proves that the PI observer and the control method are effective by comparing the actual values and estimated values.
作者 范子荣
出处 《计算机仿真》 CSCD 北大核心 2016年第3期446-449,共4页 Computer Simulation
基金 山西省自然科学基金资助项目(2015011065)
关键词 阀控不对称缸电液伺服系统 观测器 线性矩阵不等式 Electro-hydraulic valve-controlled single rod cylinder servo system Observers Linear matrix inequality
  • 相关文献

参考文献4

二级参考文献40

  • 1周敏,湛从昌.液压泵故障诊断专家系统研究[J].武汉钢铁学院学报,1993,16(1):113-118. 被引量:5
  • 2Pang Ming-bao, Hao Xin-ping. Traffic Flow Prediction of chaos Time Series by Using Subtractive Clustering for Fuzzy Neural Net- work Modeling[C]. Second International Symposium on Intelligent Information Technology Application, 2008.
  • 3吕明,吴晓蓓,徐志良.一类非线性网络控制系统的故障检测[J].控制工程,2007,14(5):515-517. 被引量:3
  • 4嵇国光.液压系统故障诊断与排除[M].北京:海洋出版社,1994.
  • 5董选民.鲁棒故障诊断及其在液压系统中的应用研究[D].北京:北京航空航天大学,1997.
  • 6黄志坚.轧机液压故障诊断与监测研究[D].北京:北京航空航天大学,2003.
  • 7GADDOUNA B O. Fault diagnosis in a hydraulic process using unknown input observers[C]//Proceedings of the IEEE International Conference on Control Applications,Hartford, CT, 1997(1): 490-495.
  • 8LINARIC D, KOROMAN V. Fault diagnosis of a hydraulic actuator using neural network[C]//IEEE International Conference on Industrial Technology, Maribor,Slovenia, 2003(1): 108-111.
  • 9AN L, SEPEHRI N. Hydraulic actuator circuit fault detection using extended kalman filter[C]//Proceedings of the American Control Conference, Denver, Colorado,2003(5): 4 261-4 266.
  • 10高英杰.轧机AGC液压系统故障诊断技术的研[D].秦皇岛:燕山大学,2001.

共引文献154

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部